
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

More Hoare Logic

From the previous classes

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditions

We also need to describe the rules which
combine program and specifications.

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Summary of the Semantics
of Commands

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Rules of Hoare Logic
Skip

⊢skip: P⇒P

Rules of Hoare Logic
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

Today: More Hoare Logic

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q

Correctness of a rule

⊢c : P ⇒ Q
⊢c1:P1⇒Q1 …

We say that a rule is correct if given valid triples
as described by the assumption(s), we can
prove the validity of the triple in the conclusion.

⊢cn:Pn⇒Qn

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:P⇒Q

Is this strong enough?

⊢c2:P⇒Q

Some examples

⊢ 𝚒𝚏 𝚝𝚛𝚞𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1

How can we derive this?

: {x = 1} ⇒ {x = 1}

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Rules of Hoare Logic
While

⊢while e do c : ??

⊢c : ??

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

Invariant

Some examples

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1

How can we derive this?

: {x = 1} ⇒ {x = 1}

Some examples

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1 : {x = 1} ⇒ {x = 1 ∧ x ≠ 0}

⊢ x := x + 1 : {x = 1 ∧ x = 0} ⇒ {x = 1}

⊢ x := x + 1 : {x + 1 = 1} ⇒ {x = 1}

⊢ 𝚠𝚑𝚒𝚕𝚎 x = 0 𝚍𝚘 x := x + 1: {x = 1} ⇒ {x = 1}
x = 1 ∧ x ≠ 0 ⇒ x = 1

x = 1 ∧ x = 0 ⇒ x + 1 = 1

Some examples

How can we derive this?

: {true} ⇒ {y = 3}

x:=3;
y:=1;
while x > 1 do
y := y+1;
x := x-1;

⊢

