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Noninterference and Relational Hoare Logic



From the previous classes



Information Flow Control
We want to guarantee that  confidential inputs 
do not flow to nonconfidential outputs.

public public

private private



Low equivalence
Two memories m1 and m2 are low 
equivalent if and only if they coincide in 
the value that they assign to public 
variables.

In symbols: m1 ~low m2



Noninterference
A program prog is noninterferent if and 
only if, whenever we run it on two low 
equivalent memories m1 and m2 we have 
that: 
1) Either both terminate or both non-

terminate; 
2) If they both terminate we obtain two 

low equivalent memories m1’ and m2’.



Noninterference
In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

public public

private private



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y

Yes



x:private 
y:public 

y:=x

No

Does this program satisfy 
noninterference?



Is this program secure?

x:private 
y:public 

y:=x 
y:=5

Yes



Does this program satisfy 
noninterference?

x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No - an “implicit flow”



How can we prove our 
programs noninterferent?



Relational Property
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private private
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Relational Assertions

c1 ∼ c2 : P ⇒ Q
Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which  
memory we are referring to.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

How do we check this?



Rules of Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false



Rules of Relational Hoare Logic 
Assignment

⊢x1:=e1~x2:=e2:  
 P[e1<1>/x1<1>, 
 e2<2>/x2<2>]⇒ 

 P

What is changed from last class?



Today: More Relational 
Hoare Logic



Rules of Relational Hoare Logic 
Assignment Example

⊢x:=x+1 ~ y:=y-1:  
 (x<1> = -y<2>) 
 [(x+1)<1>/x<1>, 
  (y-1)<2>/y<2>]⇒ 
 x<1> = -y<2>



Rules of Relational Hoare Logic 
Assignment Example

⊢x:=x+1 ~ y:=y-1:  
 (x<1> = -y<2>) 
 [(x<1>+1)/x<1>, 
  (y<2>-1)/y<2>]⇒ 
 x<1> = -y<2>



Rules of Relational Hoare Logic 
Assignment example

⊢x:=x+1 ~ y:=y-1:  
 x<1>+1 = -(y<2>-1) ⇒ 
 x<1> = -y<2>



Rules of Relational Hoare Logic 
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S



Rules of Relational Hoare Logic 
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Consequence + Assignment 
Example

⊢x:=x+1 ~ y:=y-1:  
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:  
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)



Rules of Relational Hoare Logic 
If-then-else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2 : e1<1>⋀e2<2>⋀P ⇒ Q
⊢c1’~c2’: ¬e1<1>⋀¬e2<2>⋀P ⇒ Q

⊢ :P⇒Q

Is this correct?



Rules of Relational Hoare Logic 
If-then-else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)



Rules of Relational Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)



Rules of Relational Hoare-Logic 
One-sided Rules

if e then c1 else c1’  
          ~ 
          c2

⊢ :P⇒Q

What do we do if our two programs 
have different forms? There are 
three pairs of one-sided rules.



Rules of Relational Hoare Logic 
If-then-else — left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If-then-else — right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
Assignment — left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Rules of Relational Hoare Logic 
Assignment — right

⊢skip ~ x:=e:  
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll 
ignore for now



Rules of Relational Hoare Logic 
Program Equivalence Rule

⊨P:c1’≡c1

⊢c1~c2: P ⇒ Q

c1’~c2’: P ⇒ Q
⊨P:c2’≡c2

⊨P:c1≡c2 means {c1}m = {c2}m 
for all m such that P(m)



Rules of Relational Hoare Logic 
Program Equivalences

⊨P : skip;c ≡ c 

⊨P : c;skip ≡ c 

⊨P:(c1;c2);c3 ≡ c1;(c2;c3) 

…



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2;c3 ~ c1’;c2’;c3’: P ⇒ Q

⊢c1;c2 ~ c1’: P ⇒ R

⊢c3 ~ c2’;c3’: R ⇒ Q

We can combine the Composition and 
Program Equivalence Rules to split 
commands where we like:



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ skip: P ⇒ R

⊢c2 ~ c1’: R ⇒ Q

⊢c1;c2 ~ skip;c1’: P ⇒ Q



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ c1’: P ⇒ R

⊢c2 ~ skip: R ⇒ Q

⊢c1;c2 ~ c1’;skip: P ⇒ Q



Relational Hoare Logic in 
EasyCrypt

• EasyCrypt’s implementation of 
Relational Hoare Logic has much in 
common with its implementation of 
Hoare Logic. 

• Look for the pRHL tactics in Section 
3.4 of the EasyCrypt Reference 
Manual (the “p” stands for 
“probabilistic”, but ignore that for now). 



In Lab next, we’ll look at 
some noninterference 
proofs in EasyCrypt


