
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Noninterference and Relational Hoare Logic

From the previous classes

Information Flow Control
We want to guarantee that confidential inputs
do not flow to nonconfidential outputs.

public public

private private

Low equivalence
Two memories m1 and m2 are low
equivalent if and only if they coincide in
the value that they assign to public
variables.

In symbols: m1 ~low m2

Noninterference
A program prog is noninterferent if and
only if, whenever we run it on two low
equivalent memories m1 and m2 we have
that:
1) Either both terminate or both non-

terminate;
2) If they both terminate we obtain two

low equivalent memories m1’ and m2’.

Noninterference
In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

public public

private private

Does this program satisfy
noninterference?

x:private
y:public

x:=y

Yes

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

Is this program secure?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

No - an “implicit flow”

How can we prove our
programs noninterferent?

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Relational Assertions

c1 ∼ c2 : P ⇒ Q
Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which
memory we are referring to.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

How do we check this?

Rules of Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false

Rules of Relational Hoare Logic
Assignment

⊢x1:=e1~x2:=e2:
 P[e1<1>/x1<1>,
 e2<2>/x2<2>]⇒

 P

What is changed from last class?

Today: More Relational
Hoare Logic

Rules of Relational Hoare Logic
Assignment Example

⊢x:=x+1 ~ y:=y-1:
 (x<1> = -y<2>)
 [(x+1)<1>/x<1>,
 (y-1)<2>/y<2>]⇒
 x<1> = -y<2>

Rules of Relational Hoare Logic
Assignment Example

⊢x:=x+1 ~ y:=y-1:
 (x<1> = -y<2>)
 [(x<1>+1)/x<1>,
 (y<2>-1)/y<2>]⇒
 x<1> = -y<2>

Rules of Relational Hoare Logic
Assignment example

⊢x:=x+1 ~ y:=y-1:
 x<1>+1 = -(y<2>-1) ⇒
 x<1> = -y<2>

Rules of Relational Hoare Logic
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S

Rules of Relational Hoare Logic
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Consequence + Assignment
Example

⊢x:=x+1 ~ y:=y-1:
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)

Rules of Relational Hoare Logic
If-then-else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2 : e1<1>⋀e2<2>⋀P ⇒ Q
⊢c1’~c2’: ¬e1<1>⋀¬e2<2>⋀P ⇒ Q

⊢ :P⇒Q

Is this correct?

Rules of Relational Hoare Logic
If-then-else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)

Rules of Relational Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)

Rules of Relational Hoare-Logic
One-sided Rules

if e then c1 else c1’
 ~
 c2

⊢ :P⇒Q

What do we do if our two programs
have different forms? There are
three pairs of one-sided rules.

Rules of Relational Hoare Logic
If-then-else — left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
If-then-else — right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
Assignment — left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

Rules of Relational Hoare Logic
Assignment — right

⊢skip ~ x:=e:
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll
ignore for now

Rules of Relational Hoare Logic
Program Equivalence Rule

⊨P:c1’≡c1

⊢c1~c2: P ⇒ Q

c1’~c2’: P ⇒ Q
⊨P:c2’≡c2

⊨P:c1≡c2 means {c1}m = {c2}m
for all m such that P(m)

Rules of Relational Hoare Logic
Program Equivalences

⊨P : skip;c ≡ c

⊨P : c;skip ≡ c

⊨P:(c1;c2);c3 ≡ c1;(c2;c3)

…

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2;c3 ~ c1’;c2’;c3’: P ⇒ Q

⊢c1;c2 ~ c1’: P ⇒ R

⊢c3 ~ c2’;c3’: R ⇒ Q

We can combine the Composition and
Program Equivalence Rules to split
commands where we like:

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ skip: P ⇒ R

⊢c2 ~ c1’: R ⇒ Q

⊢c1;c2 ~ skip;c1’: P ⇒ Q

Rules of Relational Hoare Logic
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ c1’: P ⇒ R

⊢c2 ~ skip: R ⇒ Q

⊢c1;c2 ~ c1’;skip: P ⇒ Q

Relational Hoare Logic in
EasyCrypt

• EasyCrypt’s implementation of
Relational Hoare Logic has much in
common with its implementation of
Hoare Logic.

• Look for the pRHL tactics in Section
3.4 of the EasyCrypt Reference
Manual (the “p” stands for
“probabilistic”, but ignore that for now).

In Lab next, we’ll look at
some noninterference
proofs in EasyCrypt

