CS 591: Formal Methods in Security and Privacy
Probabilistic computations

Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu
From the previous classes
Information Flow Control

We want to guarantee that **confidential inputs** do not flow to **nonconfidential outputs**.
Noninterference as a Relational Property

In symbols, \(c \) is noninterferent if and only if for every \(m_1 \sim_{\text{low}} m_2 \):

1) \(\{c\}_{m_1} = \bot \) iff \(\{c\}_{m_2} = \bot \)

2) \(\{c\}_{m_1} = m_1' \) and \(\{c\}_{m_2} = m_2' \) implies \(m_1' \sim_{\text{low}} m_2' \)
Relational Hoare Quadruples

\[c_1 \sim c_2 : P \Rightarrow Q \]

Precondition (a logical formula)

Program

Postcondition (a logical formula)
Relational Assertions

$c_1 \sim c_2 : P \Rightarrow Q$

Need to talk about variables of the two memories

c_1 \sim c_2 : x\langle 1 \rangle \leq x\langle 2 \rangle \Rightarrow x\langle 1 \rangle \geq x\langle 2 \rangle

Tags describing which memory we are referring to.
Validity of Hoare quadruple

We say that the quadruple \(c_1 \sim c_2 : P \Rightarrow Q \) is valid if and only if for every pair of memories \(m_1, m_2 \) such that \(P(m_1, m_2) \) we have:

1) \(\{c_1\}_{m_1} = \bot \iff \{c_2\}_{m_2} = \bot \)

2) \(\{c_1\}_{m_1} = m_1' \) and \(\{c_2\}_{m_2} = m_2' \) implies \(Q(m_1', m_2') \).

How do we check this?
Which rules do we need to prove this?

\[
x: \text{private} \\
y: \text{public} \\
y := x; y := 5
\]

\[
\quad\Rightarrow\quad =_{\text{low}} \implies =_{\text{low}}
\]
Rules of Relational Hoare Logic

Assignment

\[\vdash x_1 := e_1 \sim x_2 := e_2 : \]
\[P[e_1<1>/x_1<1>, e_2<2>/x_2<2>] \Rightarrow P \]
Rules of Relational Hoare Logic

Consequence

We can weaken P, i.e. replace it by something that is implied by P. In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. In this case R.

\[
\begin{align*}
P & \Rightarrow S \\
\vdash C_1 \sim C_2 : S & \Rightarrow R \\
R & \Rightarrow Q \\
\vdash C_1 \sim C_2 : P & \Rightarrow Q
\end{align*}
\]
Rules of Relational Hoare Logic
Composition

\[\vdash c_1 \sim c_2 : P \Rightarrow R \quad \vdash c_1' \sim c_2' : R \Rightarrow S \]

\[\vdash c_1 ; c_1' \sim c_2 ; c_2' : P \Rightarrow S \]
Which rules do we need to prove this?

x: private
y: public

if y mod 3 = 0 then
 x := 1
else
 x := 0

\[:= \text{low} \Rightarrow := \text{low} \]
Rules of Relational Hoare Logic

If-then-else

\[P \Rightarrow (e_1 < 1> \iff e_2 < 2>) \]

\[\vdash c_1 \sim c_2 : e_1 < 1> \land P \Rightarrow Q \]

\[\vdash c_1' \sim c_2' : \neg e_1 < 1> \land P \Rightarrow Q \]

if \(e_1 \) then \(c_1 \) else \(c_1' \)

\[\vdash \sim : P \Rightarrow Q \]

if \(e_2 \) then \(c_2 \) else \(c_2' \)
Which rules do we need to prove this?

s1: public
s2: private
r: private
i: public
n: public

proc Compare (s1:list[n] bool, s2:list[n] bool)
i:=0;
r:=0;
while i< n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1
:n>0 /
\ =low ⇒ =low
Rules of Relational Hoare Logic
While

\[P \Rightarrow (e_1<1> \iff e_2<2>) \]

\[\vdash \neg c_1 \land c_2 : e_1<1> \land P \Rightarrow P \]

\[\vdash \neg \text{while } e_1 \text{ do } c_1 \]

\[\vdash \neg \text{while } e_2 \text{ do } c_2 \]

Invariant
Rules of Relational Hoare Logic
If-then-else - left

\[\vdash c_1 \sim c_2 : e{<1} \land P \implies Q \]
\[\vdash c_1' \sim c_2 : \neg e{<1} \land P \implies Q \]

\[\vdash \quad \sim \quad : P \Rightarrow Q \]

\[
\begin{align*}
\text{if } e \text{ then } c_1 \text{ else } c_1' \\
\text{C}_2
\end{align*}
\]
Rules of Relational Hoare Logic

If-then-else - right

\[\vdash c_1 \sim c_2' : \neg e \langle 2 \rangle \land P \Rightarrow Q \]

\[\vdash c_1 \sim c_2 : e \langle 2 \rangle \land P \Rightarrow Q \]

\[\vdash c_1 \sim c_2' : \neg e \langle 2 \rangle \land P \Rightarrow Q \]

\[\vdash \quad c_1 \quad \sim \quad : P \Rightarrow Q \]

\[\quad \text{if } e \text{ then } c_2 \text{ else } c_2' \]
Rules of Relational Hoare Logic
Assignment - left

⊢ x := e ~ skip: P[e<1>/x<1>] ⇒ P
Soundness

If we can derive $\vdash \sim c_1 \sim c_2 : P \Rightarrow Q$ through the rules of the logic, then the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid.
Relative Completeness

If a quadruple $c_1 \sim c_2 : P \implies Q$ is valid, and we have an oracle to derive all the true statements of the form $P \implies S$ and of the form $R \implies Q$, then we can derive $\vdash c_1 \sim c_2 : P \implies Q$ through the rules of the logic.
Soundness and completeness with respect to Hoare Logic

\[\vdash_{\text{RHL}} c_1 \sim c_2 : P \Rightarrow Q \]

iff

\[\vdash_{\text{HL}} c_1 ; c_2 : P \Rightarrow Q \]

Under the assumption that we can partition the memory adequately, and that we have termination.
Possible projects

In Easycrypt
• Look at how to guarantee trace-based noninterference.
• Look at how to guarantee side-channel free noninterference.
• Look at the relations between self-composition and relational logic.

Not related to Easycrypt
• Look at type systems for non-interference.
• Look at other methods for relational reasoning
• Look at declassification
Today: Probabilistic Language
An example

```
OneTimePad(m : private msg) : public msg
key ::= Uniform({0,1}^n);
cipher ::= msg xor key;
return cipher
```

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.
Probabilistic While (PWhile)

c ::= abort
 | skip
 | x := e
 | x := $d
 | c ; c
 | if e then c else c
 | while e do c

d_1, d_2, ... probabilistic expressions
Probabilistic Expressions

We extend the language with expression describing probability distributions.

$$d ::= f(e_1, \ldots, e_n, d_1, \ldots, d_k)$$

Where f is a distribution declaration

Some expression examples

uniform($\{0,1\}^n$) gaussian(k,σ) laplace(k,b)
Semantics of Probabilistic Expressions

We would like to define it on the structure:

\[\{ f(e_1, \ldots, e_n, d_1, \ldots, d_k) \}_m = \{ f \}(\{ e_1 \}_m, \ldots, \{ e_n \}_m, \{ d_1 \}_m, \ldots, \{ d_k \}_m) \]

but is the result just a value?
A discrete subdistribution over a set A is a function $\mu : A \rightarrow [0, 1]$ such that the mass of μ,

$$|\mu| = \sum_{a \in A} \mu(a)$$

verifies $|\mu| \leq 1$.

The support of a discrete subdistribution μ, $\text{supp}(\mu) = \{a \in A \mid \mu(a) > 0\}$ is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by $D(A)$, and say that μ is of type $D(A)$ denoted $\mu:D(A)$ if $\mu \in D(A)$.
Probabilistic Subdistributions

We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event \(E \subseteq A \) with respect to the subdistribution \(\mu : \mathcal{D}(A) \) as

\[
\mathbb{P}_\mu[E] = \sum_{a \in E} \mu(a)
\]
Probabilistic Subdistributions

Let's consider $\mu \in \mathcal{D}(\mathcal{A})$, and $E \subseteq \mathcal{A}$, we have the following properties

$$P_\mu[\emptyset] = 0$$

$$P_\mu[A] \leq 1$$

$$0 \leq P_\mu[E] \leq 1$$

$E \subseteq F \subseteq \mathcal{A}$ implies $P_\mu[E] \leq P_\mu[F]$.

$E \subseteq \mathcal{A}$ and $F \subseteq \mathcal{A}$ implies $P_\mu[E \cup F] \leq P_\mu[E] + P_\mu[F] - P_\mu[E \cap F]$.

We will denote by \mathbf{O} the subdistribution μ defined as constant 0.
Operations over Probabilistic Subdistributions

Let’s consider an arbitrary $a \in A$, we will often use the distribution $\text{unit}(a)$ defined as:

$$\mathbb{P}_{\text{unit}(a)}[\{b\}] = \begin{cases} 1 \text{ if } a=b \\ 0 \text{ otherwise} \end{cases}$$

We can think about unit as a function of type $\text{unit}: A \rightarrow D(A)$
Operations over Probabilistic Subdistributions

Let’s consider a distribution $\mu \in D(A)$, and a function $M : A \rightarrow D(B)$ then we can define their composition by means of an expression $\text{let } a = \mu \text{ in } M(a)$ defined as:

$$\mathbb{P}_{\text{let } a = \mu \text{ in } M(a)}[E] = \sum_{a \in \text{supp}(\mu)} \mathbb{P}_\mu[\{a\}] \cdot \mathbb{P}_{(Ma)}[E]$$
Semantics of Probabilistic Expressions - revisited

We would like to define it on the structure:

\[\{ f(e_1, \ldots, e_n, d_1, \ldots, d_k) \}_m = \{ f \}(\{ e_1 \}_m, \ldots, \{ e_n \}_m, \{ d_1 \}_m, \ldots, \{ d_k \}_m) \]

With input a memory \(m \) and output a subdistribution \(\mu \in D(A) \) over the corresponding type \(A \). E.g.

\[\{ \text{uniform}({0,1}^n) \}_m \in D({0,1}^n) \]

\[\{ \text{gaussian}(k, \sigma) \}_m \in D(\text{Real}) \]