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Probabilistic computations



From the previous classes



Information Flow Control
We want to guarantee that  confidential inputs 
do not flow to nonconfidential outputs.
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Noninterference as a Relational Property
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Quadruples

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Relational Assertions

c1 ∼ c2 : P ⇒ Q
Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which  
memory we are referring to.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

How do we check this?



x:private 
y:public 

y:=x;y:=5 

: =low ⇒ =low

Which rules do we need to 
prove this?



Rules of Relational Hoare Logic 
Assignment

⊢x1:=e1~x2:=e2:  
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P



Rules of Relational Hoare Logic 
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Rules of Relational Hoare Logic 
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S
⊢c1;c1’~c2;c2’:P⇒S



x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0 

: =low ⇒ =low

Which rules do we need to 
prove this?



Rules of Relational Hoare Logic 
If-then-else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)



s1:public 
s2:private 
r:private 
i:public 
n:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ =low

Which rules do we need to 
prove this?



Rules of Relational Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)



Rules of Relational Hoare Logic 
If-then-else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If-then-else - right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
Assignment - left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Possible projects
• Look at how to guarantee trace-based 

noninterference. 
• Look at how to guarantee side-channel free 

noninterference. 
• Look at the relations between self-composition and 

relational logic.

In Easycrypt

Not related to Easycrypt
• Look at type systems for non-interference. 
• Look at other methods for relational reasoning 
• Look at declassification



Today:  
Probabilistic Language



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… probabilistic expressions



Probabilistic Expressions
We extend the language with expression describing probability 
distributions. 

Where f is a distribution declaration

d::= f(e1,…,en,d1,…,dk)                

Some expression examples

uniform({0,1}n) gaussian(k,σ) laplace(k,b)



Semantics of Probabilistic 
Expressions

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

but is the result just a value?



Probabilistic Subdistributions
A discrete subdistribution over a set A is a function  
µ : A → [0, 1]  
such that the mass of µ, 

  

verifies |µ| ≤ 1.  

The support of a discrete subdistribution µ, 
supp(µ) = {a ∈ A | µ(a) > 0}  
is necessarily countable, i.e. finite or countably infinite.  

We will denote the set of sub-distributions over A by D(A), 
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).  

|μ | = ∑
a∈A

μ(a)



Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution. 

We define the probability of an event E⊆A with respect to 
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)



Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following 
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.



Operations over  
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the 
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)



Operations over  
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function  
M:A → D(B) then we can define their composition by means 
of an expression  let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]



Semantics of Probabilistic 
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over 
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)


