
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Probabilistic computations

From the previous classes

Information Flow Control
We want to guarantee that confidential inputs
do not flow to nonconfidential outputs.

public public

private private

Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Quadruples

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Relational Assertions

c1 ∼ c2 : P ⇒ Q
Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which
memory we are referring to.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

How do we check this?

x:private
y:public

y:=x;y:=5

: =low ⇒ =low

Which rules do we need to
prove this?

Rules of Relational Hoare Logic
Assignment

⊢x1:=e1~x2:=e2:
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P

Rules of Relational Hoare Logic
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Rules of Relational Hoare Logic
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S
⊢c1;c1’~c2;c2’:P⇒S

x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

: =low ⇒ =low

Which rules do we need to
prove this?

Rules of Relational Hoare Logic
If-then-else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)

s1:public
s2:private
r:private
i:public
n:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ =low

Which rules do we need to
prove this?

Rules of Relational Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)

Rules of Relational Hoare Logic
If-then-else - left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
If-then-else - right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
Assignment - left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Relative Completeness

If a quadruple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Possible projects
• Look at how to guarantee trace-based

noninterference.
• Look at how to guarantee side-channel free

noninterference.
• Look at the relations between self-composition and

relational logic.

In Easycrypt

Not related to Easycrypt
• Look at type systems for non-interference.
• Look at other methods for relational reasoning
• Look at declassification

Today:
Probabilistic Language

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)
c::= abort
 | skip
 | x:= e
 | x:=$ d
 | c;c
 | if e then c else c
 | while e do c

d1,d2,… probabilistic expressions

Probabilistic Expressions
We extend the language with expression describing probability
distributions.

Where f is a distribution declaration

d::= f(e1,…,en,d1,…,dk)

Some expression examples

uniform({0,1}n) gaussian(k,σ) laplace(k,b)

Semantics of Probabilistic
Expressions

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

but is the result just a value?

Probabilistic Subdistributions
A discrete subdistribution over a set A is a function
µ : A → [0, 1]
such that the mass of µ,

verifies |µ| ≤ 1.

The support of a discrete subdistribution µ,
supp(µ) = {a ∈ A | µ(a) > 0}
is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A),
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).

|μ | = ∑
a∈A

μ(a)

Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event E⊆A with respect to
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)

Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.

Operations over
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)

Operations over
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function
M:A → D(B) then we can define their composition by means
of an expression let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]

Semantics of Probabilistic
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)

