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Security and Privacy



Formal Methods aim at making this process 
mathematically rigorous.



Goal of formal methods: 
building applications that are 

correct. 



Why correctness matters?



What does “correct” mean?

A program is correct if it respects the specification:

• What is computed (functional aspects)

• How it is computed (non-functional aspects).



Infosec 
Institute

Why correctness matters?
An example:
DARPA HACMS (High Assurance Cyber Military Systems)



Is correctness easy to 
guarantee?



Function Add(x: int, y: int) : int
{
  r = 0;
  n = y;
  while n != 0
  {
    r = r + 1;
    n = n - 1;
  }
  return r
}

Is this code correct?



Function Add(x: int, y: int) : int
{
  r = 0;
  n = y;
  while n != 0
  {
    r = r + 1;
    n = n - 1;
  }
  return r
}

Is this code correct?

Something 
seems wrong.

Is It the name  
or the program?



Function Add(x: int, y: int) : int
{
  r = 0;
  n = y;
  while n != 0
  {
    r = r + 1;
    n = n - 1;
  }
  return r
}
Postcondition: r = x + y

Adding the specification



Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
  r = 0;
  n = y;
  while n != 0
  {
    r = r + 1;
    n = n - 1;
  }
  return r
}
Postcondition: r = x + y

Adding the specification



Precondition: x ≥ 0 and y ≥ 0
Function Add(x: int, y: int) : int
{
  r = 0;
  n = y;
  while n != 0
  {
    r = r + 1;
    n = n - 1;
  }
  return r
}
Postcondition: r = x + y

Does the program comply with  the 
specification?

Fail to meet 
the specification



In the rest of the class
• We will focus on methods to guarantee correctness of 

programs with respect to security and privacy 
properties. 

• We will address in particular three properties of security 
and privacy. 

• We will focus on program-based methods, where the 
security and privacy guarantees depend on the program 
design.  

• This is in contrast to (whole) system security and 
privacy, which require to consider many other aspects.



Why formal methods?
• Formal proofs can be checked by a machine, and 

designed with the support of a machine. 
• Formal methods provide strong guarantees of software 

correctness. 
• Formal systems usually allow us to create digital 

certificates that can be used to verify the trust of the 
software component. 

• In applications that require strong security and privacy 
guarantees, we cannot make mistakes.



What is the recipe we will  
follow?
•We will look at specific notions of security and 
privacy 

•We will formalize these notions, through some 
formal model useful to determine if a program 
satisfy this notion or not. 

•We will then look at a formal logic which allow us 
to mechanize this reasoning.  

•We will use the formal logic on several examples.



What will we look at?

• Basic methods to reason formally about whether 
programs meet their specification: Hoare Logic 

• Adapt this method to reason about security in 
terms of information flow: Relational Hoare Logic 

• Adapt this method to reason about security in 
terms of formal cryptography: Probabilistic 
Relational Hoare Logic  

• Adapt this method to reason about data privacy in 
terms of differential privacy: Approximate 
Probabilistic Relational Hoare Logic 
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Syllabus for the course

Lecture Time and Location: CAS 221 or Zoom - Tu-Tr 3:30 - 4:45 
EasyCrypt Lab Time: We 6:30pm-7:45pm (on Zoom) 
Office Hours: on Zoom by appointment

Course load:  
- completing the assignments, 
- working on a project and presenting the 

results.



Course Webpages: Piazza
• Course will use Piazza and the class webpage 
• Piazza: 

piazza.com/bu/spring2021/cs591g1/home 
• Q/A 
• Homework and solutions 

• Class webpage: 
http://cs-people.bu.edu/gaboardi/teaching/S21-CS591.html 

• Class slides 
• Materials



Notes

http://software.imdea.org/~gbarthe/__introrelver.pdf
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Schedule



Grade Break Down
•60% Assignments  
(5 EasyCrypt + 2 theory) 

•40% Project



Assignments
• 1 EasyCrypt assignment to get you familiar with EasyCrypt ambient 
logic (Due Week 2- tentatively) 

• 1 EasyCrypt assignment to get you familiar with Hoare Logic 
(Due in Week 3 - tentatively) 

• 1 theoretical assignment on Hoare Logic 
(Due in Week 4 - tentatively) 

• 1 EasyCrypt assignment on Non-Interference  and Relational Hoare 
Logic (Due in Week 5 - tentatively). 

• 1 EasyCrypt assignment on Probabilistic Non-Interference 
(Due in Week 6 - tentatively). 

• 1 theoretical assignment on Probabilistic Coupling 
(Due in Week 7 - tentatively) 

• 1 EasyCrypt assignment on Differential Privacy 
(Due in Week 8 - tentatively)



EasyCrypt Assignments

• Discussions with other students about the assignment are 
permitted and encouraged.  

• However, the solutions to the EasyCrypt assignments must 
be your own. No pair or group submission is allowed.



Academic integrity policy
The Department of Computer Science takes the academic 
integrity of all students seriously. In order to uphold the integrity 
of our programs and the university, we rely on students to 
behave appropriately and take responsibility for their mistakes. 
Please review the following pages to better understand the 
expectations of the department, college, and university, as well 
as the process of any academic misconduct matters. 

•https://www.bu.edu/academics/policies/academic-conduct-
code/ 

•https://www.bu.edu/cs/undergraduate/undergraduate-life/
academic-integrity/



EasyCrypt
• Proof assistant for mechanizing proofs in the program 

logics we’ll study in this course 
• You’ll be using EasyCrypt in the course’s assignments, 

and perhaps in the course project 
• To date, EasyCrypt has mostly been used to mechanize 

proofs from theoretical cryptography 
• But we’ll also consider other applications, e.g., to 

noninterference and differential privacy



EasyCrypt
• EasyCrypt proofs are about simple assignment-oriented 

programming language with while loops and random 
assignments 

• EasyCrypt has logics supporting: 
• Reasoning about single programs 
• Reasoning about pairs of programs—relational logic 
• Reasoning in a typed higher-order logic—for general 

mathematics, and connecting results from other logics



EasyCrypt
• EasyCrypt proofs: 

• structured as sequences of lemmas 
• lemmas are proved using tactics, which reduce goals to 

zero or more subgoals 
• developed interactively using a special mode of Emacs 

text editor, with EasyCrypt running as subprocess 
• maybe rechecked either interactively, or in batch mode



EasyCrypt Lab Sessions
• We will have a weekly EasyCrypt lab session for showing 

more details about EasyCrypt than there is time for in 
lectures. 

• Lectures will focus on theory and applications, with lab 
sessions focusing on realization in EasyCrypt



Final Projects
Projects can take different forms depending on the interest 
of each student but all the projects must have a research 
component.  
Some examples: 

• using EasyCrypt or one of its extensions to prove 
security and privacy of a new complex algorithm, 

• design or implementation of a new programming 
language, system, or tool for security and privacy, 

• development and implementation of heuristics and 
optimizations to speed up the verification tasks for 
security and privacy, 

• investigation of new applications of relational logics.



Final Projects

We will provide some specific ideas for possible projects but 
other ideas may be accepted if well motivated and discussed with 
us. 

You may work on your project alone or with others. Groups can 
be composed by at most two students. Each group is invited to 
meet with us regularly (3-4 times during the term) to check on 
the advancements and directions of the project.

The deadline for choosing a project is March 2nd.



Questions?



Formal Logic
•We will need to reason extensively about formal 
specifications/requirements.  

•A convenient way to express these requirements 
is by means of logical formulas. 

X=Y+1 and Z=X+S

not X=Y  or  Y < X

For all n, X=n  implies  Y = n+1



Classical Logic Formulas:
Basic Predicates
We can assume that we have some basic predicates that give us 
some basic formulas (for us over program’s expressions)

X=Y

X<Y

We can think about this as some primitive operations whose 
validity we are able to establish in an atomic way. 

True

False



Classical Logic Formulas:
Connectives

If we have a formula P and a formula Q we can create the formula 
P and Q

If we have a formula P and a formula Q we can create the formula 
P or Q

If we have a formula P and a formula Q we can create the formula 
P implies Q

If we have a formula P  we can create the formula not P



Classical Logic Formulas:
Quantifiers

If we have a formula P(x) which depends on the variable x we 
can create the universally quantified formula for all x, P(x)

If we have a formula P(x) which depends on the variable x we 
can create the existentially quantified formula exists x, P(x)



Classical Logic: Proving formulas
When we are working with logical formulas we are in general 
interested in proving them true.

We could define a formal system for building proofs. This can be 
achieved for example by a formal system managing proof rules 
of the form:

assumption1 is true         assumptionk is true
conclusion is trueconclusion is true



Inductive proofs
For proving logical formulas true we need to build proofs.

We can inductively build proofs as trees:

F is true

conclusion is trueBase case: a leaf

Inductive case: 
…

F1 is true                   Fk is true

Where the assumptions of the rule have to match exactly the 
conclusion of the trees.



Meta-proofs
Since proofs are inductively defined objects, we can then reason 
about them by induction. This is useful to prove properties about 
the logic itself.  

Some examples in formal proof systems: soundness and 
completeness. 

Reference from programming languages: 
G. Winskel - The formal semantics of programming languages 
(chapter 2-3) 
https://www.cin.ufpe.br/~if721/intranet/TheFormalSemanticsofProgrammingLanguages.pdf 



Classical Logic - Proving formulas:
Conjunction
To prove that a conjunction formula P and Q is true, we need to 
show that both P and Q are true.

This corresponds to the following rule:

P true         Q true
P and Q true



Classical Logic - Proving formulas:
Conjunction
To prove that a disjunction formula P or Q is true, it is sufficient to 
show that one between P and Q is true.

This corresponds to the following two rules:

P true
P or Q true

Q true
P or Q true



Classical Logic - Proving formulas:
Negation
To prove that a negation formula not P is true, we can show that 
under the assumption that P is true, we can conclude False.

This corresponds to the following rule:

P true

False true

not P true

.
 
.
 
.

Not very precise



Notation

This  way of writing can be confusing, sometime is better to just 
write:

[P true]

False true

not P true

.
 
.
 
.

[P]

False

not P

.
 
.
 
.



Classical Logic - Proving formulas:
Implication
To prove that an implication formula P implies Q is true, we 
can show that under the assumption that P is true, we can 
conclude Q.
This corresponds to the following rule:

[P]

Q

P implies Q

.
 
.
 
.

Not very precise



Classical Logic - some examples

[P]

P implies (P or Q)

P or Q

P implies (Q implies (P and Q))

[P]

P and Q

Q implies (P and Q)

Q



Classical Logic - Proving formulas:
Universal Quantification
To prove that a universally quantified formula for all x,P(x) 
is true, we can show that under the assumption that x is an 
arbitrary element of the universe, we can conclude P(x).
This corresponds to the following rule:

P(x)

for all x,P(x) 

Not very precise



Classical Logic - Proving formulas:
Existential Quantification
To prove that an existentially quantified formula exists 
x,P(x) is true, we can show that P(t) is true for some term t  
the universe.
This corresponds to the following rule:

P(t)

exists x,P(x) 

Not very precise



Classical Logic: other rules for 
proving formulas
We have few other principles that we can use to prove formulas

If we have contradictory assumptions, we can prove anything

This corresponds to the following rule:

P and (not P)

Q



Classical Logic: other rules for 
proving formulas
If we have the assumption P implies Q and the assumption 
P, then we can prove Q.

This corresponds to the following rule:

P implies Q     P

Q



Classical Logic: other rules for 
proving formulas
If we have the assumption P or Q and we want to prove  R, 
then we can prove that R follows from P and that R follows from 
Q.

This corresponds to the following rule:

P or Q       R      R     

R

[P] [Q]

.
 
.
 
.

.
 
.
 
.



Classical Logic: other rules for 
proving formulas
In classical logic we have the Law of the Excluded Middle 
saying that a formula P is always either true or false.

This can be formulated as the following rule

P or (not P)



Classical Logic: negation
The negation of composed formulas can be often rewritten

not(P and Q) ≅ (not P) or (not Q)
not(P or Q) ≅ (not P) and (not Q)

not(P implies Q) ≅ P and (not Q)
not(not P) ≅ P

not exists x, P(x) ≅ for all x, not P(x)

not for all x, P(x) ≅ exists x, not P(x)



Classical Logic - some examples

[P]

P implies (P or Q)

P or Q

not ((P or not P) implies (P and not P))

[(P or not P) implies (P and not P)]

P and not P

False

P or not P



Classical Logic: proving complex fact

Classical logic can be combined with specific theories to prove 
more complex facts. As an example, if we combine classical 
logic with a theory of integers we can prove true formulas such 
as:

for all x,y,z, x+y=z implies x=z-y



Questions?


