CS 591: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

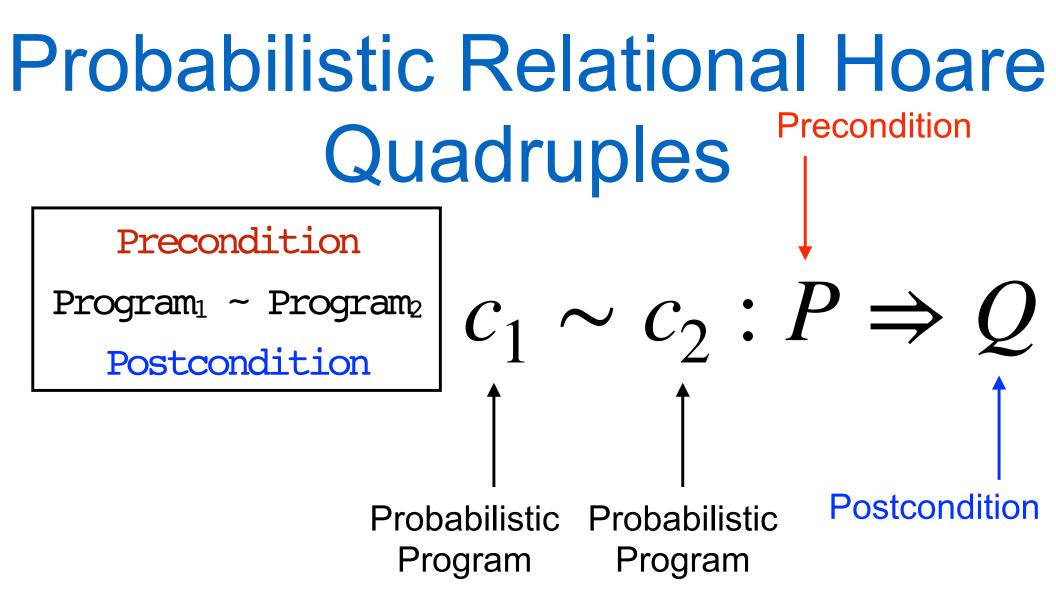
Alley Stoughton stough@bu.edu

From the previous classes

An example

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}ⁿ);
 cipher := m xor key;
 return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.



Relational Assertions $c_1 \sim c_2 : P \Rightarrow$ logical formula logical formula over pair of memories over ???? (i.e. relation over memories)

R-Coupling

Given two distributions $\mu_1 \in D(A)$, and

 $\mu_2 \in D(B)$, an **R-coupling** between them, for

- $R \subseteq AxB$, is a joint distribution $\mu \in D(AxB)$ such that:
 - 1) the marginal distributions of μ are μ_1 and μ_2 , respectively,
 - 2) the support of μ is contained in R. That is, if $\mu(a,b)>0$, then $(a,b)\in R$.

Relational lifting of a predicate We say that two subdistributions $\mu_1 \in D(A)$ and $\mu_2 \in D(B)$ are in the relational lifting of the relation $\mathbb{R} \subseteq A \times B$, denoted $\mu_1 \mathbb{R}^* \ \mu_2$ if and only if there exist an \mathbb{R} -coupling between them.

Validity of Probabilistic Hoare quadruple

We say that the quadruple $c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: $\{c_1\}_{m1} = \mu_1$ and $\{c_2\}_{m2} = \mu_2$ implies $Q^*(\mu_1, \mu_2)$.

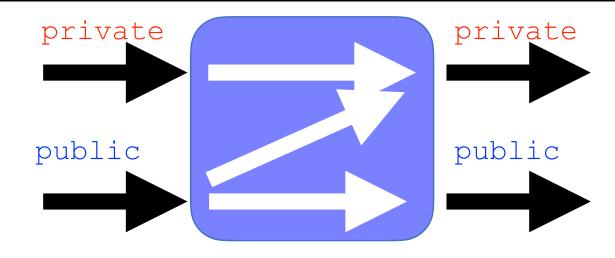
Differential Privacy

Releasing the mean of Some Data

Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>

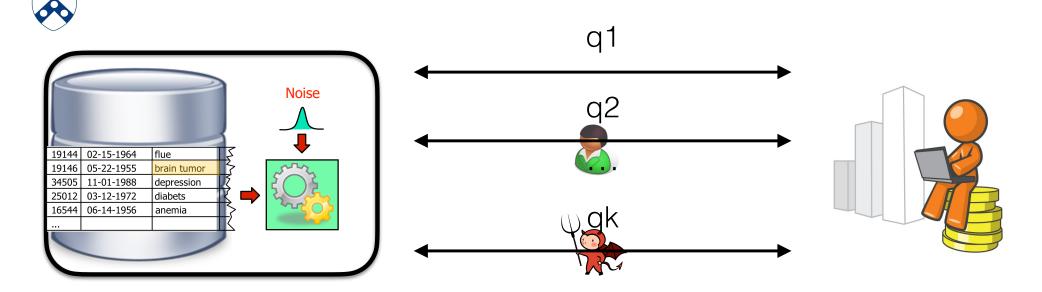
Releasing the mean of Some Data

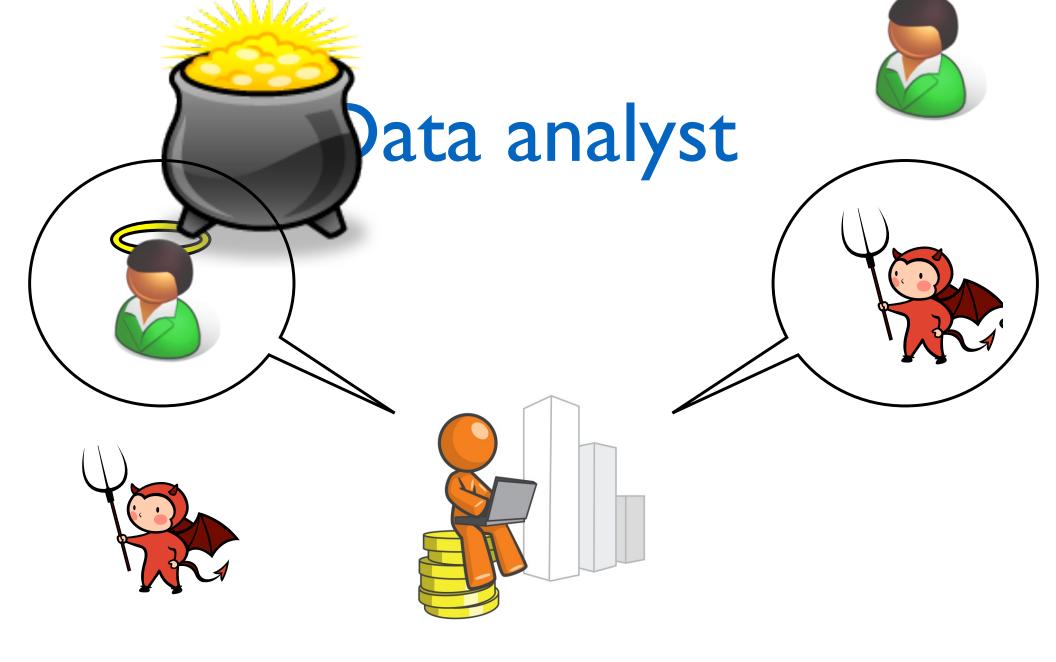
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
 s:=s + d[i]
 i:=i+1;
return (s/i)</pre>



We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

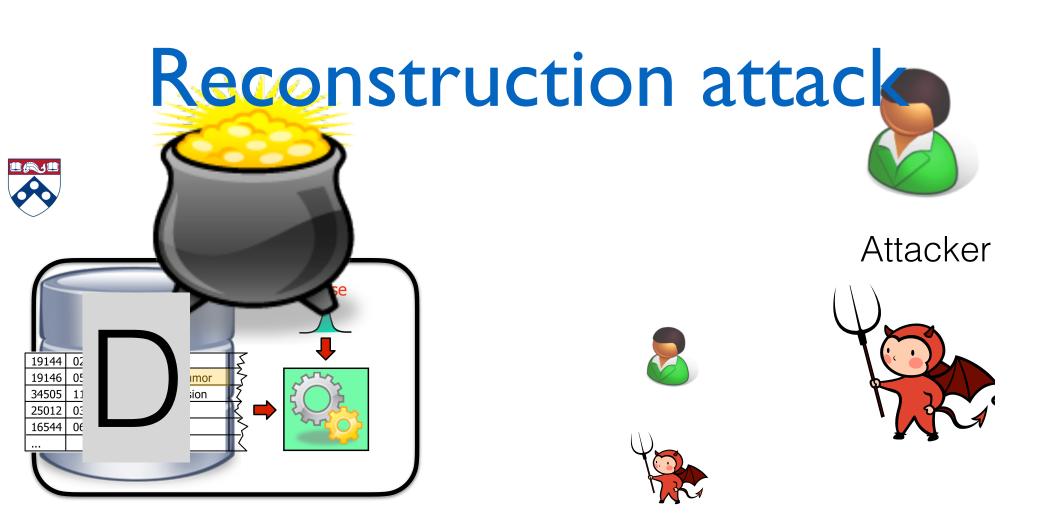
We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

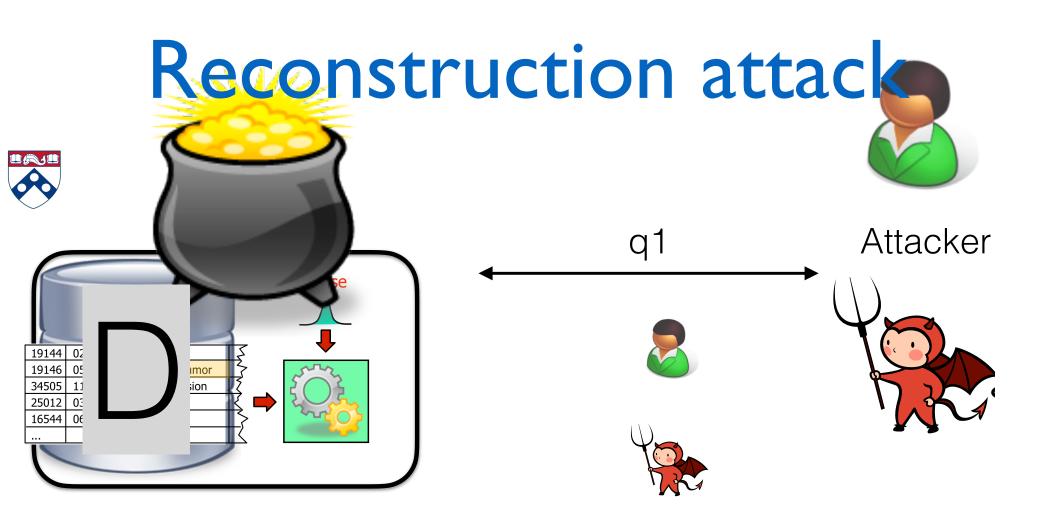


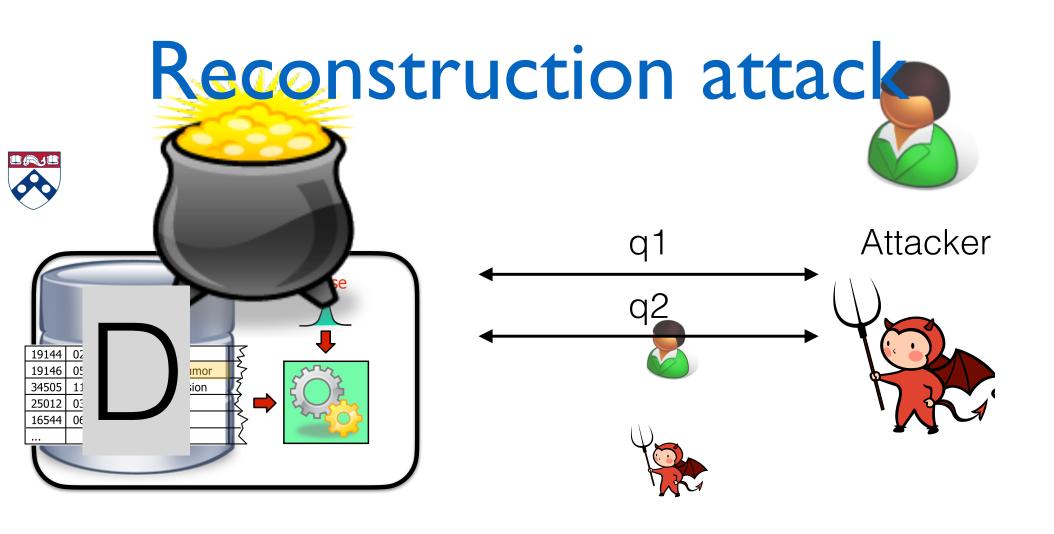


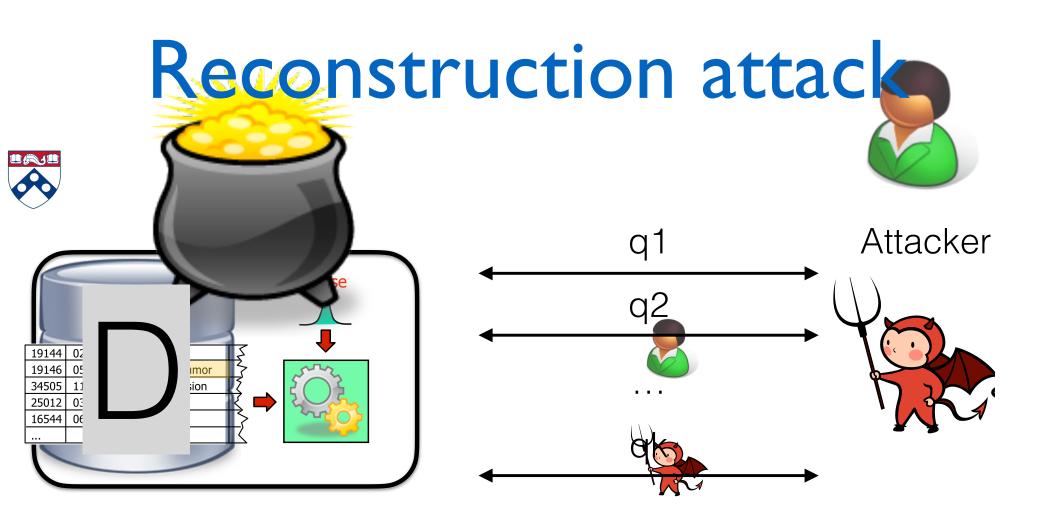
Fundamental Law of Information Reconstruction

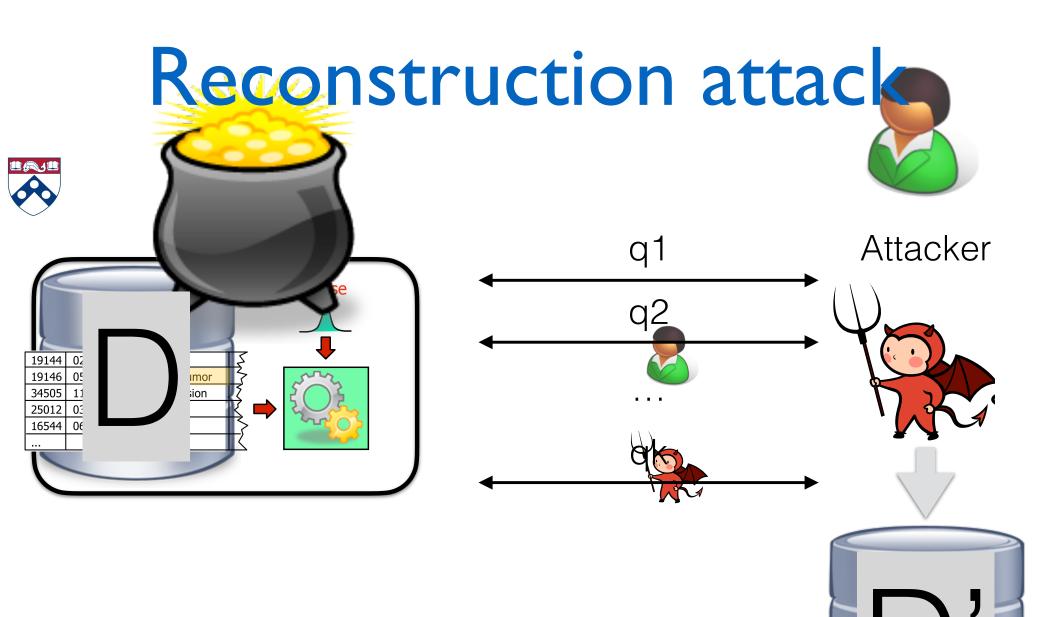
The release of too many overly accurate statistics permits reconstruction attacks.





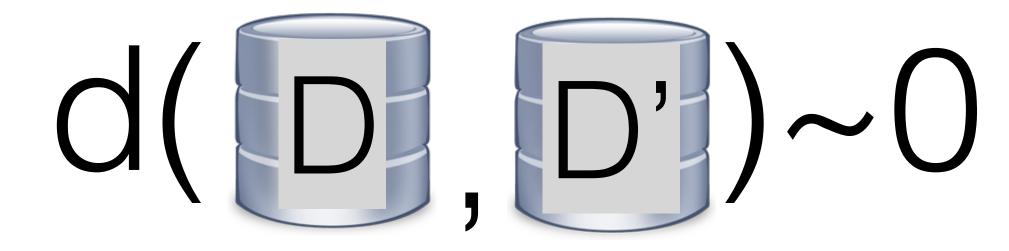






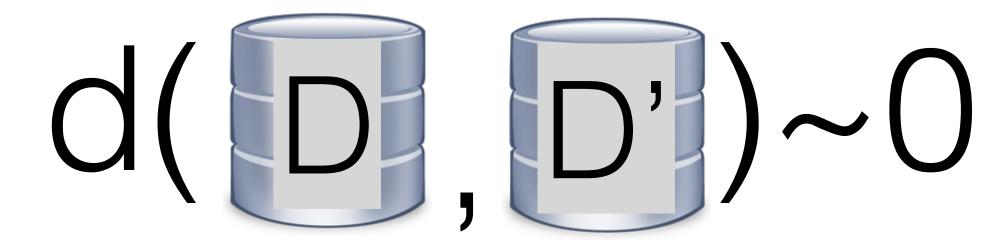
Reconstruction attack

We say that the attacker wins if

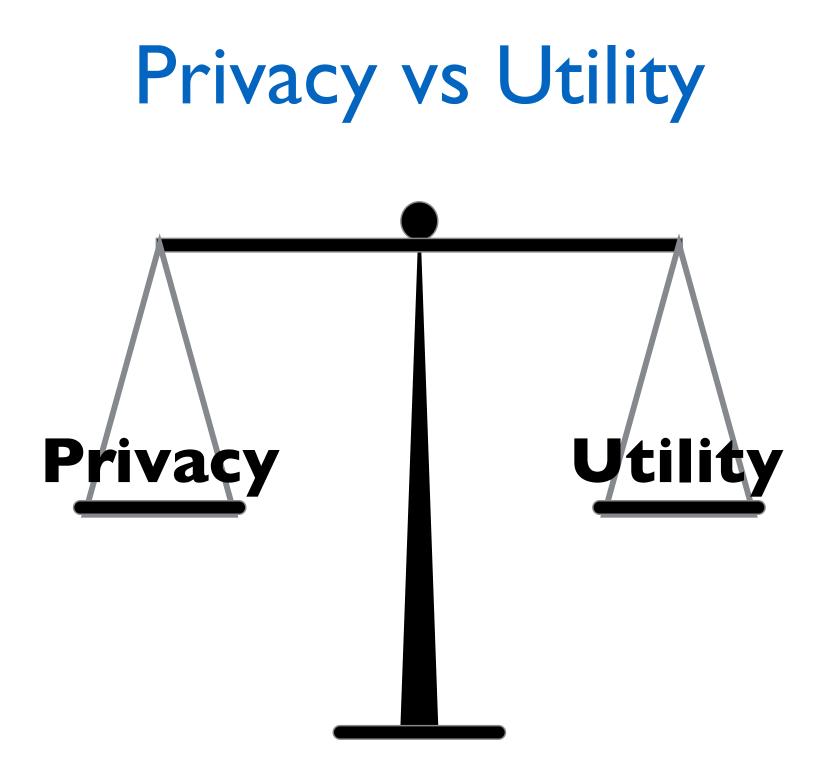


Reconstruction attack

We say that the attacker wins if



In this class case we can use Hamming distance



Quantitative notions of Privacy

- The impossibility results discussed above suggest a quantitative notion of privacy,
- a notion where the privacy loss depends on the number of queries that are allowed,
- and on the accuracy with which we answer them.

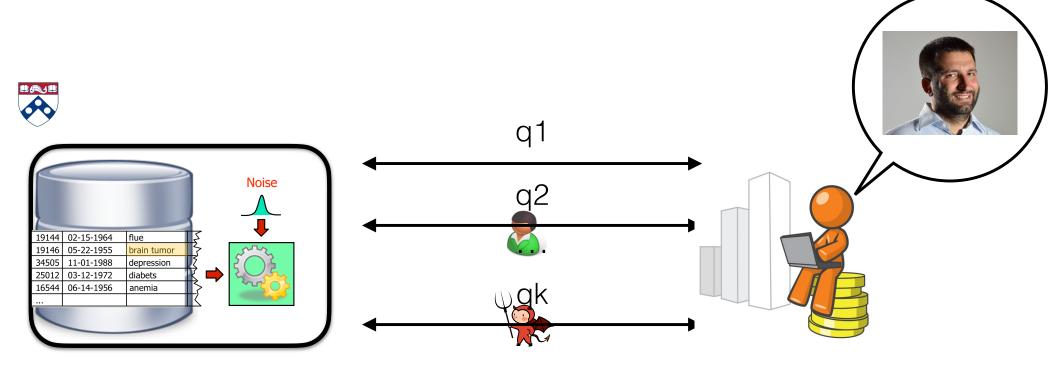
Differential privacy: understanding the <u>mathematical</u> and <u>computational</u> meaning of this tradeoff.

[Dwork, McSherry, Nissim, Smith, TCC06]

• The analyst knows no more about me after the analysis than what she knew before the analysis.

• The analyst knows no more about me after the analysis than what she knew before the analysis.

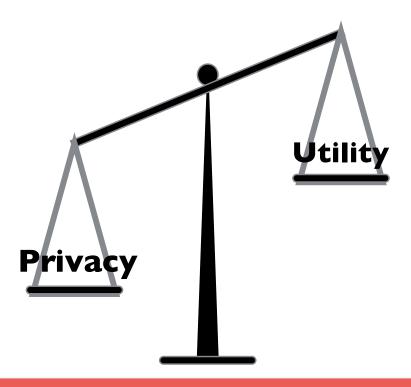
• The analyst knows no more about me after the analysis than what she knew before the analysis.



Prior Knowledge

Posterior Knowledge

Question: What is the problem with this requirement?



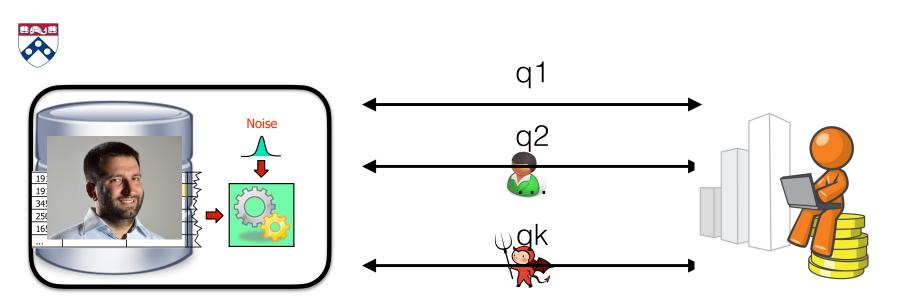
If nothing can be learned about an individual, then nothing at all can be learned at all!

[DworkNaor10]

• The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

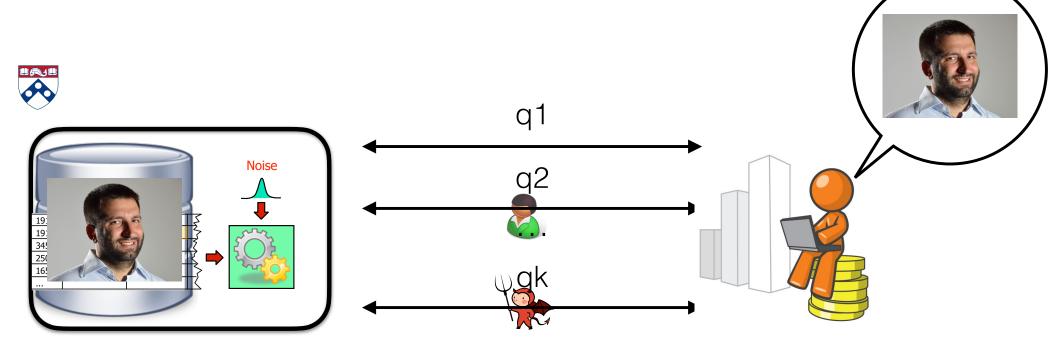
 The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.

 The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.



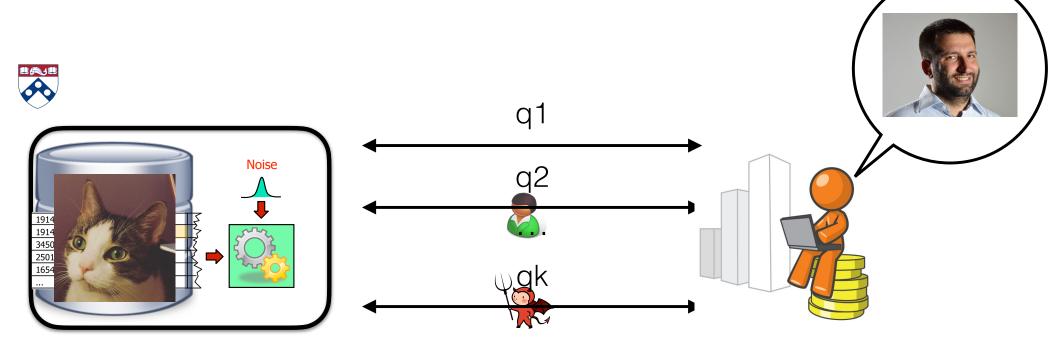
Privacy-preserving data analysis?

 The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.



Privacy-preserving data analysis?

 The analyst learn almost the same about me after the analysis as what she would have learnt if I didn't contribute my data.



Adjacent databases

- We can formalize the concept of contributing my data or not in terms of a notion of distance between datasets.
- Given two datasets D, D'∈DB, their distance is defined as:

 $D\Delta D' = |\{k \le n \mid D(k) \ne D'(k)\}|$

• We will call two datasets adjacent when $D\Delta D'=1$ and we will write $D\sim D'$.

Privacy Loss

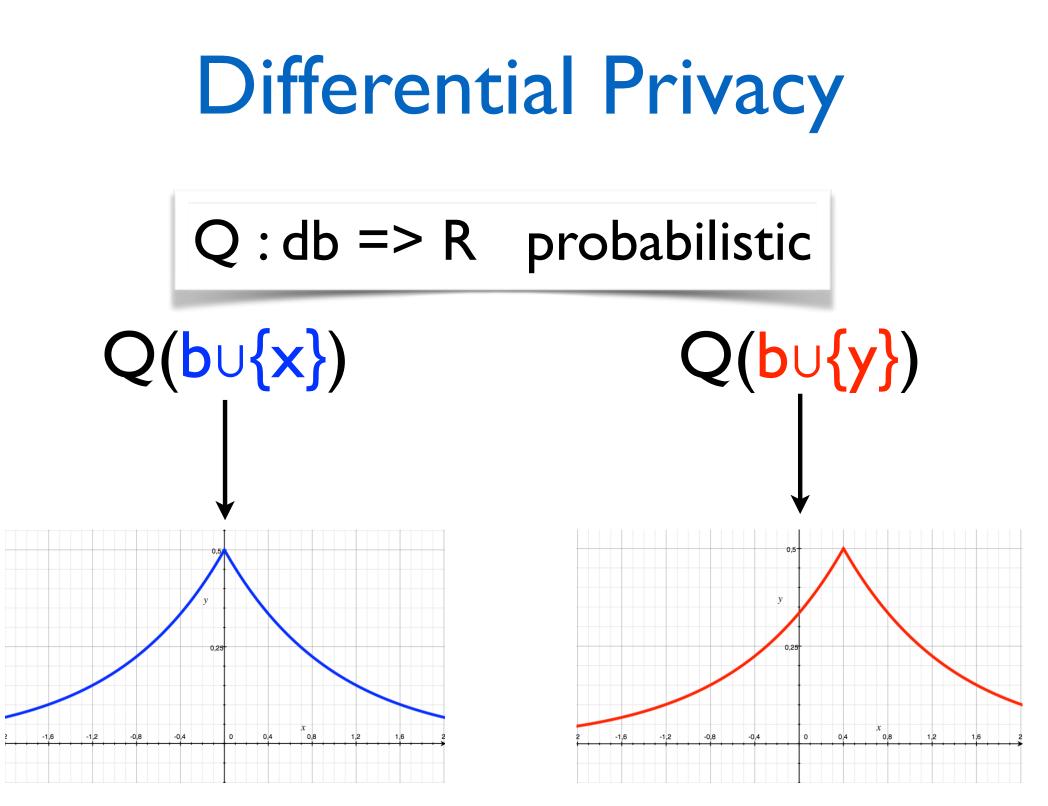
In general we can think about the following quantity as the privacy loss incurred by observing r on the databases b and b'.

$$L_{b,b'}(r) = \log \frac{\Pr[Q(b)=r]}{\Pr[Q(b')=r]}$$

(ϵ, δ) -Differential Privacy

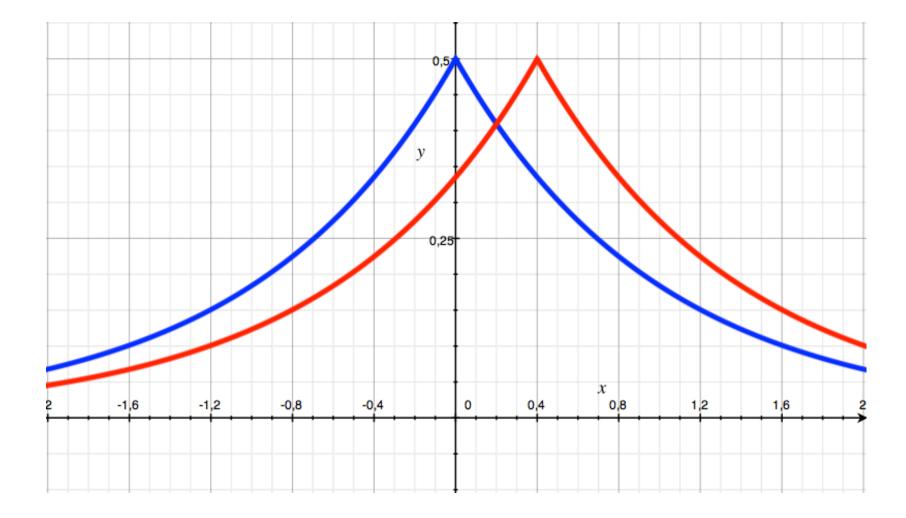
Definition

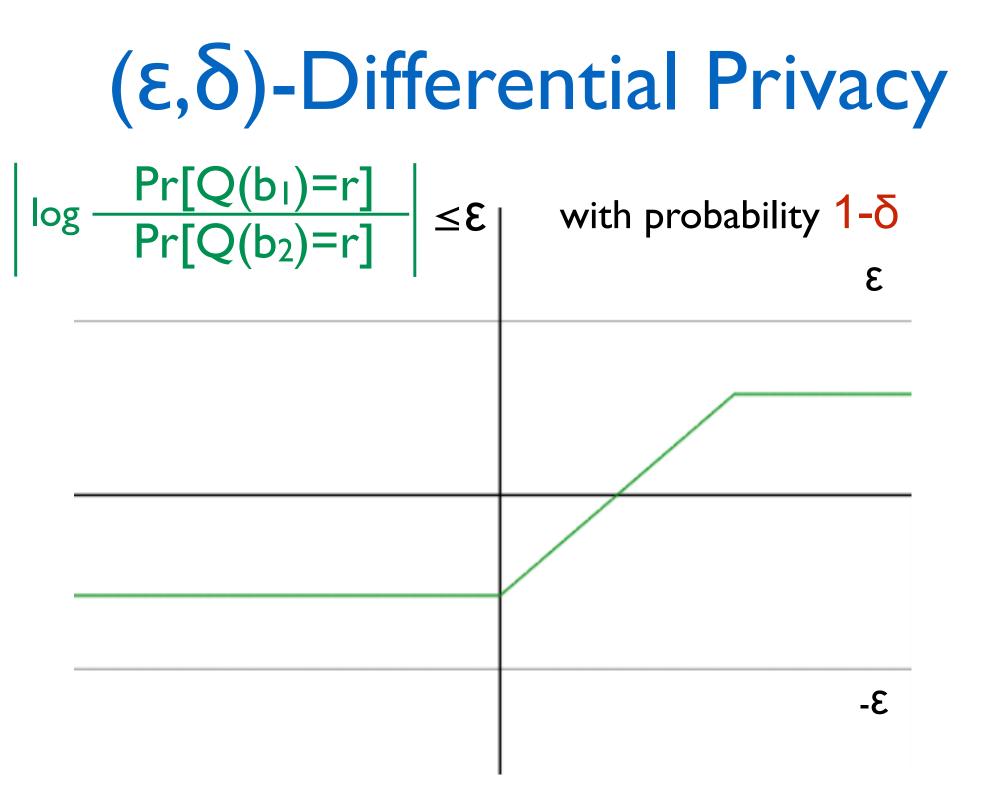
Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$



Differential Privacy

$d(Q(b \cup \{x\}), Q(b \cup \{y\})) \le \mathcal{E}$ with probability $1-\delta$





(ϵ, δ) -indistinguishability

When we defined statistical distance:

$$\Delta(\mu_1,\mu_2)=\max_{E\subseteq A} | \mu_1(E)-\mu_2(E) | = \delta$$

we also used a notion of δ -indistinguishability.

We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at **\delta**-indistinguishable if:

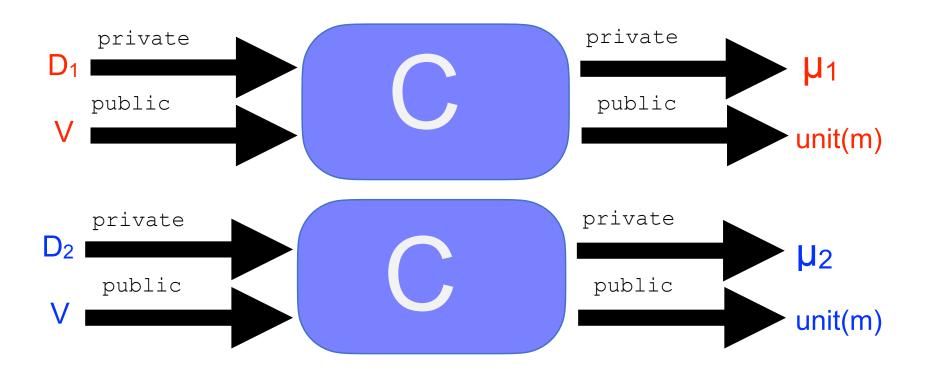
(ε, δ) -indistinguishability

- We can define a ϵ -skewed version of statistical distance. We call this notion ϵ -distance.
- $\Delta_{\epsilon}(\mu 1, \mu 2) = \sup_{E \subseteq A} \max(\mu_1(E) e^{\epsilon}\mu_2(E), \ \mu_2(E) e^{\epsilon}\mu_1(E), 0)$
 - We say that two distributions $\mu_1, \mu_2 \in D(A)$, are at (ϵ, δ) -indistinguishable if:

 $\Delta_{\epsilon}(\mu 1, \mu 2) \leq \delta$

Differential Privacy as a Relational Property

- c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):
- ${c}_{m_1}=\mu_1 \text{ and } {c}_{m_2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$



Releasing the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
return (s/i)</pre>
```

Adding Noise

Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon, 0)$ -DP?

Adding Noise

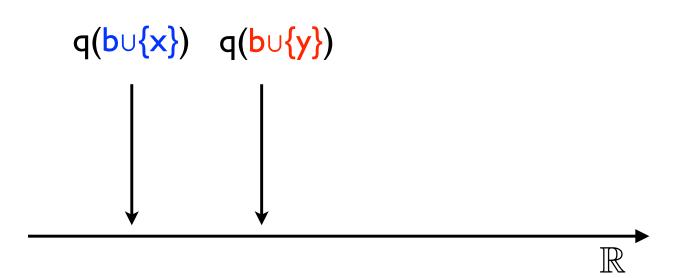
Question: What is a good way to add noise to the output of a statistical query to achieve $(\varepsilon, 0)$ -DP?

Intuitive answer: it should depend on ε or the accuracy we want to achieve, and on the scale that a change of an individual can have on the output.

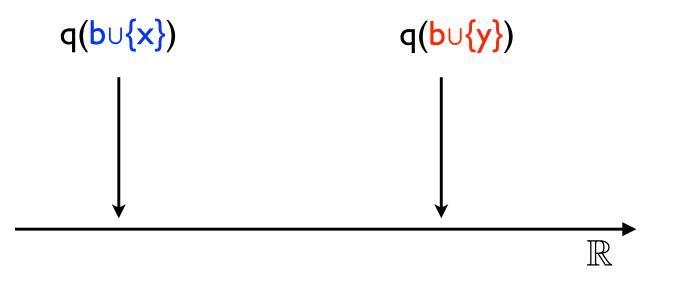
$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$

$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$

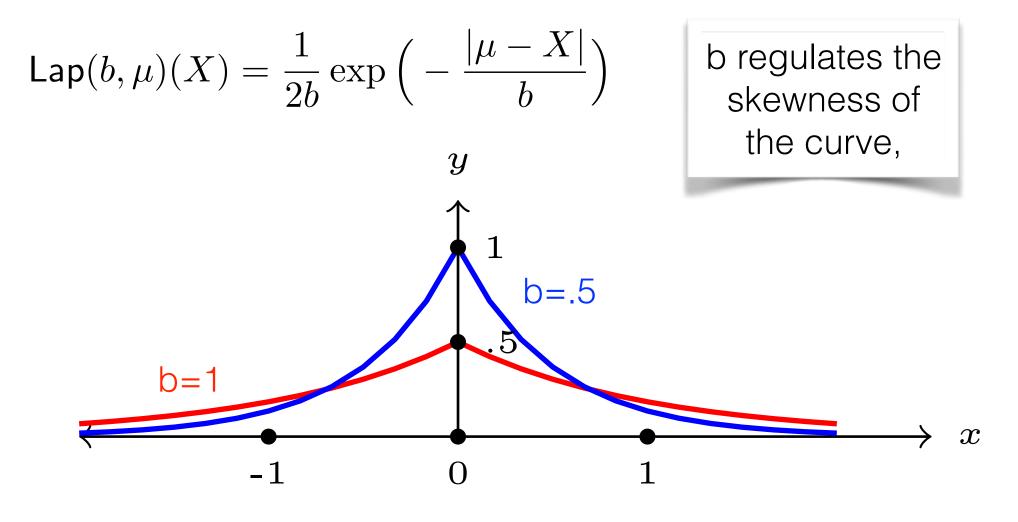
$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



Laplace Distribution



Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Laplace(sens/eps,0)
z:= (s/i)+z
return z
```

Laplace Mechanism

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,0)
  z:= f(d)+z
  return z
```

Laplace Mechanism

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,0)
  z:= f(d)+z
  return z
```

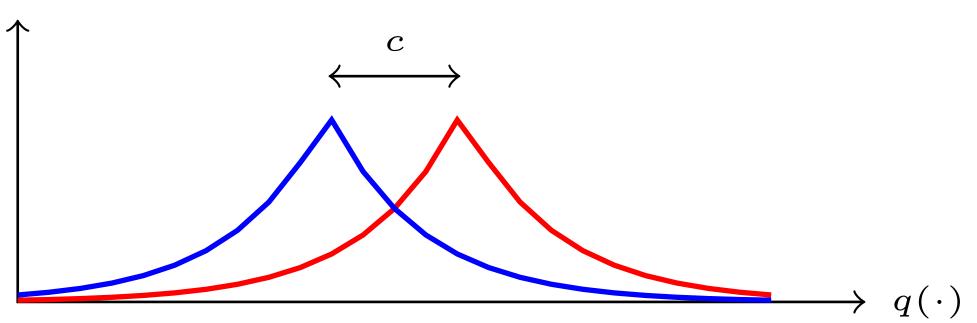
It turns out that we could also write it as:

```
Lap(d : priv data)(f: data -> real)
  (e:real) : pub real
  z:=$ Laplace(GS<sub>f</sub>/e,f(d))
  return z
```


Theorem (Privacy of the Laplace Mechanism) The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Proof: Intuitively

 \Pr{r}



Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is $(\varepsilon, 0)$ -differentially private.

Laplace Mechanism

Question: How accurate is the answer that we get from the Laplace Mechanism?

Properties of Differential Privacy

Some important properties

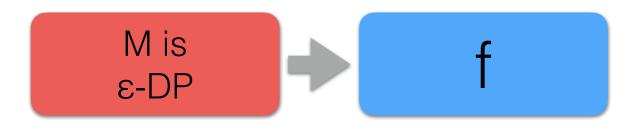
- Resilience to post-processing
- Group privacy
- Composition

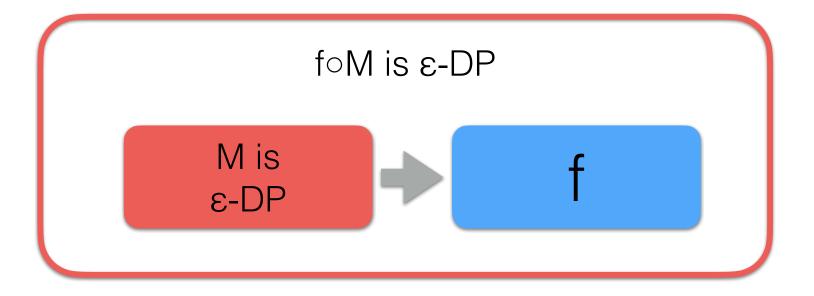
Some important properties

- Resilience to post-processing
- Group privacy
- Composition

We will look at them in the context of $(\varepsilon, 0)$ -differential privacy.

M is ε-DP



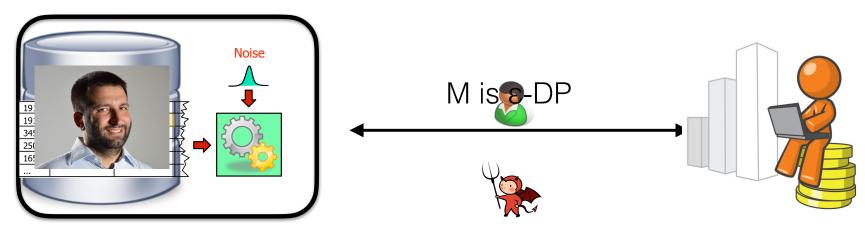


Question: Why is resilience to post-processing important?

Question: Why is resilience to post-processing important?

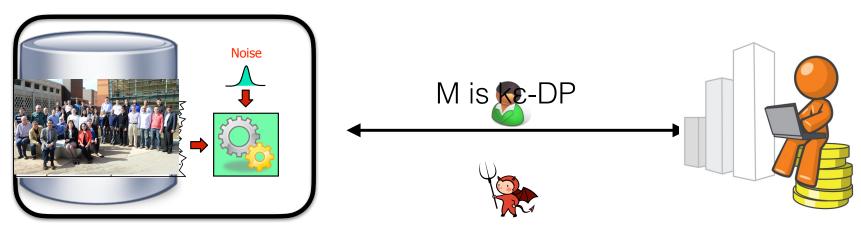
Answer: Because it is what allows us to publicly release the result of a differentially private analysis!

Group Privacy



$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$

Group Privacy



$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

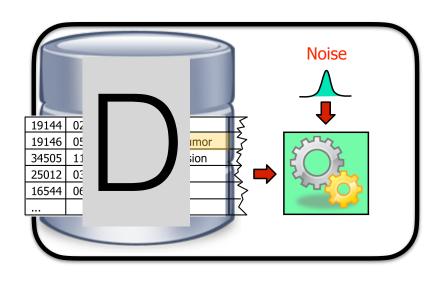
Group Privacy

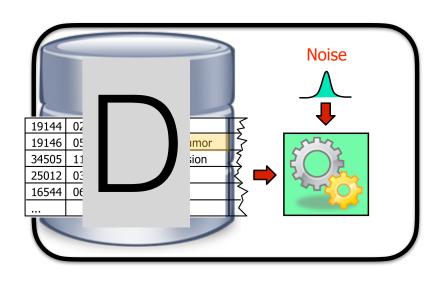
Question: Why is group privacy important?

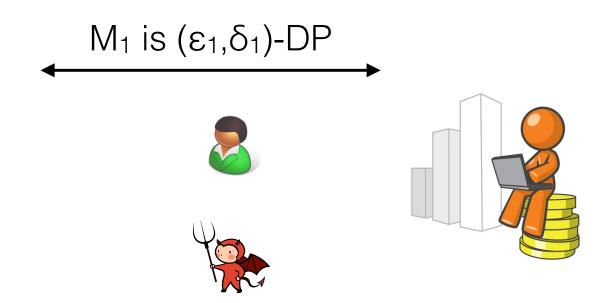
Group Privacy

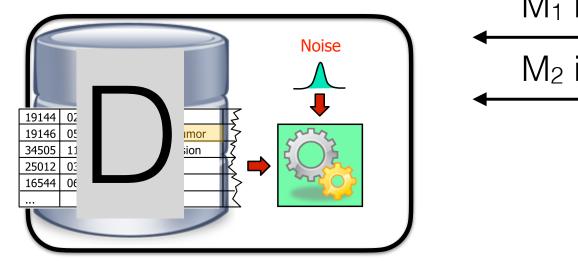
Question: Why is group privacy important?

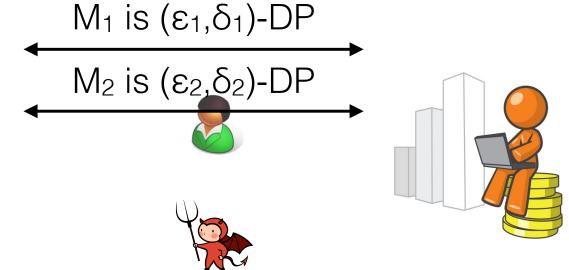
Answer: Because it allows to reason about privacy at different level of granularities!

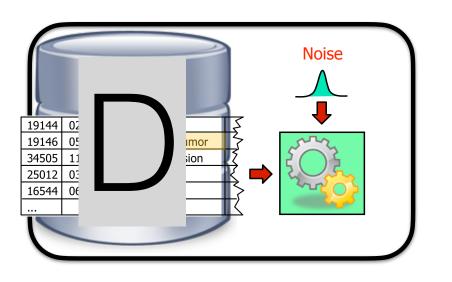


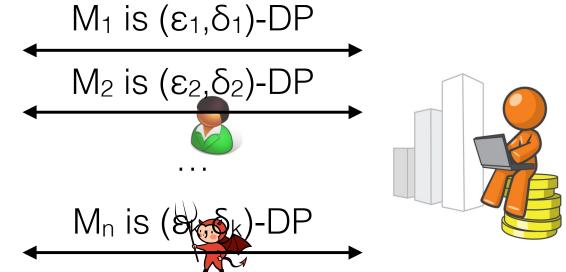


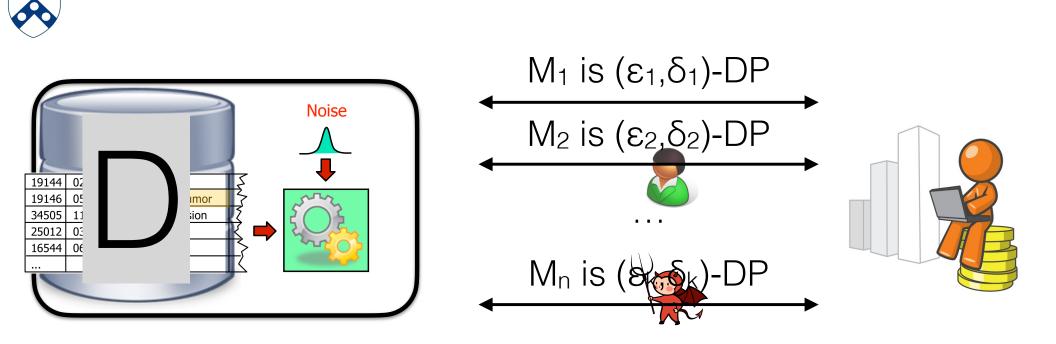












The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_k, \delta_1 + \delta_2 + \ldots + \delta_k)$ -DP

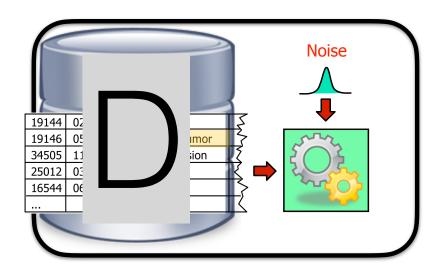
Let $M_1:DB \rightarrow R_1$ be a (ϵ_1, δ_1) -differentially private program and $M_2:DB \rightarrow R_2$ be a (ϵ_2, δ_1) -differentially private program. Then, their composition $M_{1,2}:DB \rightarrow R_1 \times R_2$ defined as $M_{1,2}(D) = (M_1(D), M_2(D))$ is $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -differentially private.

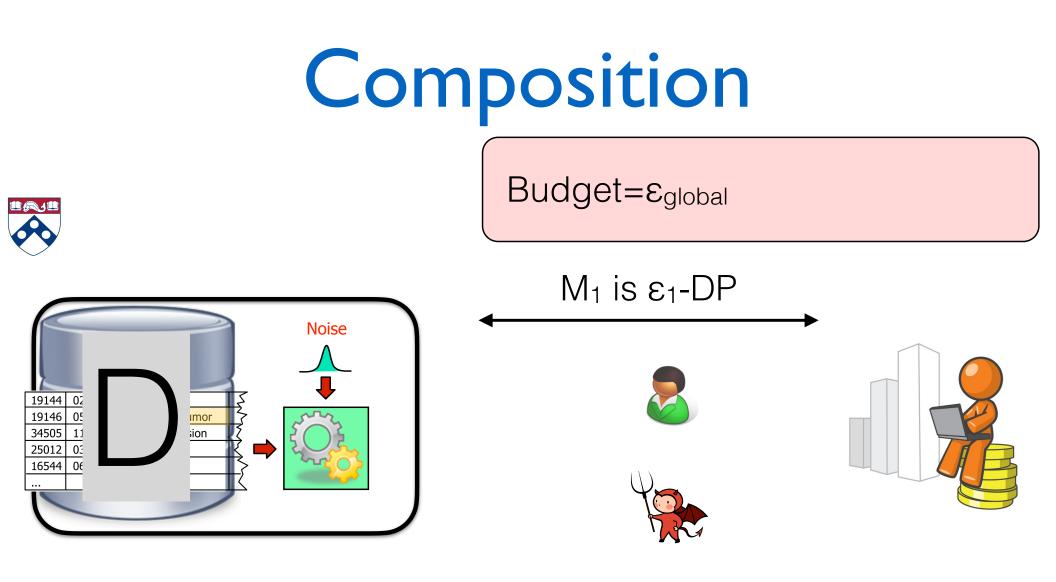
Question: Why composition is important?

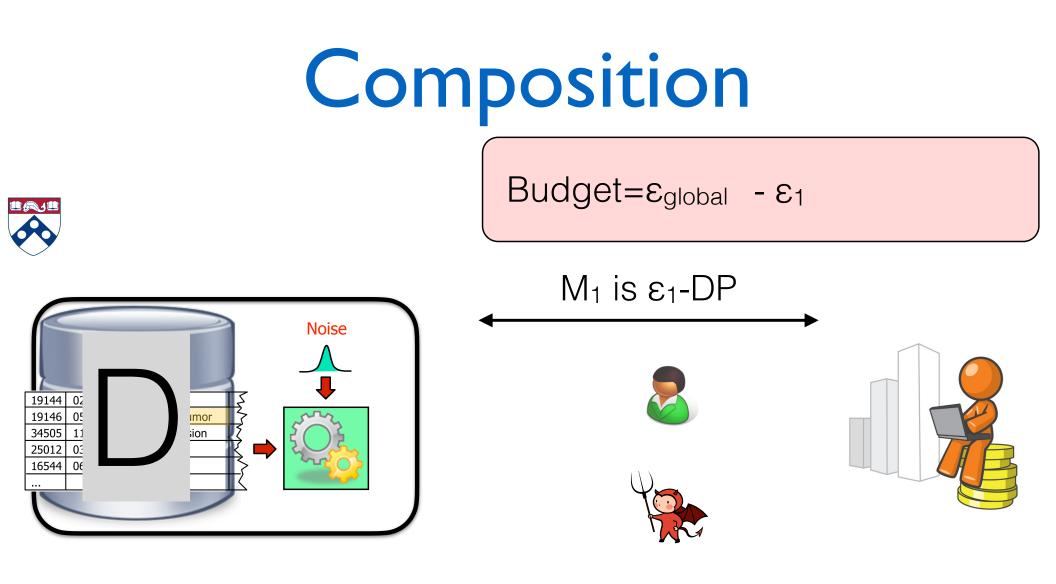
Question: Why composition is important?

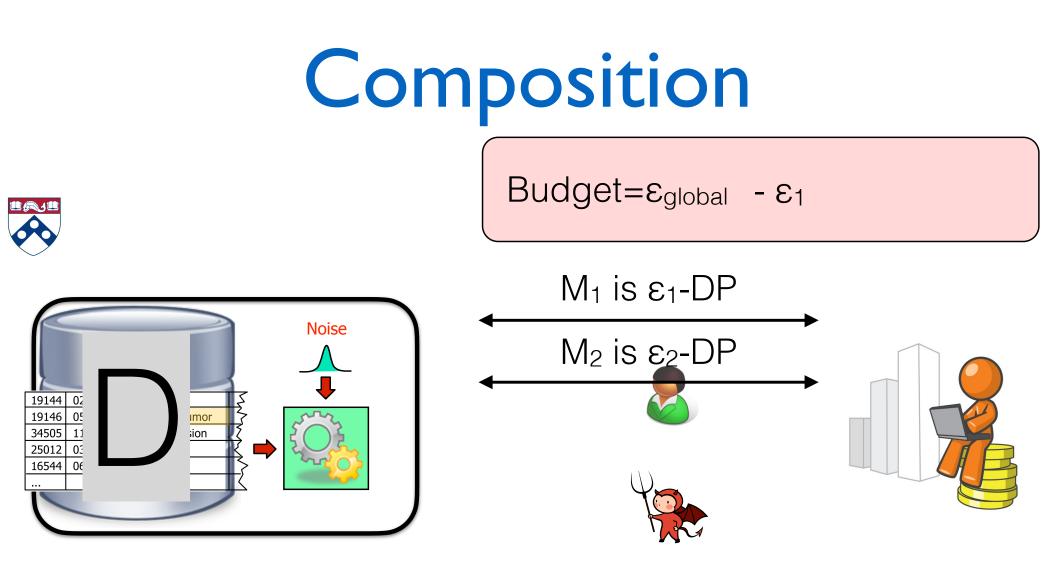
Answer: Because it allows to reason about privacy as a budget!

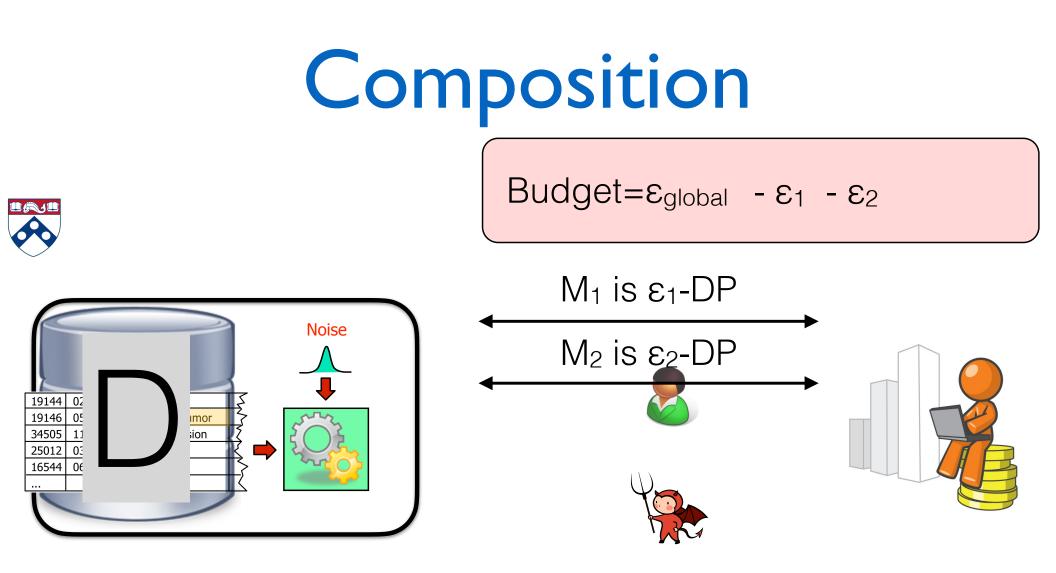
$Budget = \epsilon_{global}$



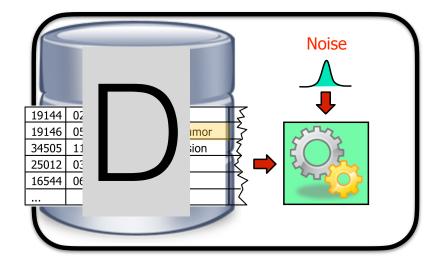


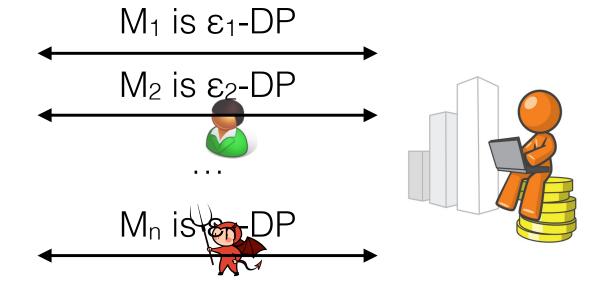




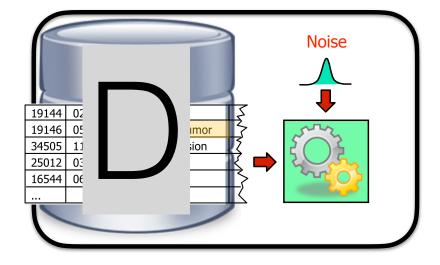


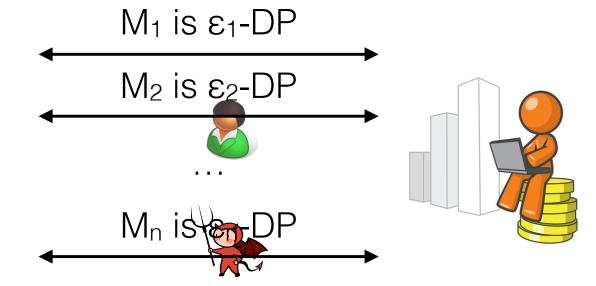
Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 ...





$$Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \dots - \epsilon_n$$





Budget= ε_{global} - ε_1 - ε_2 - ε_3 - ε_4 $- \varepsilon_5 - \varepsilon_6 - \varepsilon_7 - \varepsilon_8$ D2 D1 D3 $X = \{0, 1\}^3$ ordered wrt binary encoding. $D \in X^{10} =$ $q^{*}_{000}(D) = .3 + L(1/\epsilon_1)$ $q_{001}^{*}(D) = .4 + L(1/\epsilon_2)$ $q_{010}^{*}(D) = .6 + L(1/\epsilon_3)$ $q_{011}^*(D) = .6 + L(1/\epsilon_4)$ 1.2 $q_{100}^{*}(D) = .6 + L(1/\epsilon_5)$ 0.9 $q_{101}^{*}(D) = .9 + L(1/\epsilon_6)$ 0.6 $q_{110}^{*}(D) = 1 + L(1/\epsilon_7)$ $q^{*}_{111}(D) = 1 + L(1/\epsilon_8)$ 0.3 (

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

$$\mathsf{D} \in \mathsf{X}^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{1}))$ $q_{2}^{*}(D) = .3 + L(1/(10^{*}\varepsilon_{2}))$ $q_{3}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{3}))$

	D1	D2	D3
11	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
I 6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

$$\begin{array}{rrrr} Budget = \epsilon_{global} & -\epsilon_1 & -\epsilon_2 & -\epsilon_3 & -\epsilon_4 \\ & -\epsilon_5 & -\epsilon_6 & -\epsilon_7 & -\epsilon_8 \end{array}$$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy Budget: Budget= $\varepsilon_{global} - \sum \varepsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\varepsilon_{global} = \sum \varepsilon_{local}$

Also making them uniforms is sometimes more informative.

$$\begin{array}{c} 1.2 \\ 0.9 \\ 0.6 \\ 0.3 \\ 0 \\ 000 001 010 011 100 101 110 111 \end{array}$$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6 - ε_7 - ε_8

 $\epsilon_{global} = \epsilon + \epsilon + \epsilon + \epsilon + \epsilon + \epsilon + \epsilon = 8\epsilon$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

 $\epsilon_{global} = \epsilon + \epsilon + \epsilon = 3\epsilon$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:= 0;
  s := 0;
  r:= [];
  t := 0;
  while (i<size d)
      s := s + d[i]
      z :=  Laplace (1/eps, 0)
     t := s + z;
     r:= r ++ [t];
     i:=i+1;
  return r
```

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
  i:=0;
  s:=0;
  r:=[];
  t := 0;
  while (i<size d)
     z :=  Laplace (1/eps, 0)
     t:= d[i] + z
     s:= s + t
     r:= r ++ [s];
     i:=i+1;
  return r
```

Parallel Composition

Let $M_1:DB \rightarrow R$ be a (ϵ_1, δ_1) -differentially private program and $M_2:DB \rightarrow R$ be a (ϵ_2, δ_2) -differentially private program. Suppose that we partition D in a data-independent way into two datasets D₁ and D₂. Then, the composition $M_{1,2}:DB \rightarrow R$ defined as $MP_{1,2}(D)=(M_1(D_1),M_2(D_2))$ is $(\max(\epsilon_1,\epsilon_2),\max(\delta_1,\delta_2))$ -differentially private.