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From the previous classes



Releasing the mean of 
Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i] 
    i:=i+1; 
 return (s/i)  
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(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn→R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



(ε,δ)-indistinguishability

We can define a ε-skewed version of statistical 
distance. We call this notion ε-distance.

Δε(µ1,µ2)=supE⊆A max(µ1(E)-eεµ2(E), µ2(E)-eεµ1(E),0)

We say that two distributions µ1, µ2 ∈D(A), are at  
(ε,δ)-indistinguishable if:

Δε(µ1,µ2) ≤ δ



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ

public

private private
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public

private private
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Releasing privately the 
mean of Some Data

Mean(d : private data) : public real 
 i:=0; 
 s:=0; 
 while (i<size(d)) 
    s:=s + d[i] 
    i:=i+1; 
 z:=$ Laplace(sens/eps,0) 
 z:= (s/i)+z   
 return z



Laplace Distribution
14 Di�erential Privacy
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

b regulates the 
skewness of 
the curve,

b=.5

b=1

Lap(b, µ)(X) =
1

2b
exp

⇣
� |µ�X|

b

⌘



Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is (ε,0)-differentially private.16 Di�erential Privacy
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
1

≠ ‘|q(D)≠z|
�q

2

exp
1

≠ ‘|q(DÕ)≠z|
�q

2

= exp
1

‘(|q(DÕ) ≠ z| ≠ |q(D) ≠ z|)
�q

2

Æ exp
1

‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Proof: Intuitively

Laplace Mechanism



Today



Laplace Mechanism
Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is (ε,0)-differentially private.



Laplace Mechanism

Question: How accurate is the answer that we get from 
the Laplace Mechanism?



Differential Privacy as a Relational 
Property

c is differentially private if and only if for every 
m1 ~ m2  (extending the notion of adjacency 
to memories): 
{c}m1=µ1 and {c}m2=µ2 implies Δε(µ1,µ2) ≤ δ
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apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



Validity of apRHL judgments

We say that the quadruple ⊢ε,δ c1~c2:P⇒Q 
is valid if and only if for every pair of 
memories m1,m2 such that P(m1,m2) we 
have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Qε,δ*(μ1,μ2).



R-(ε,δ)-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), 
we have an R-(ε,δ)-coupling between them, 
for R⊆AxB and 0≤δ≤1, ε≥0, if there are two 
joint distributions µL,µR∈D(AxB) such that: 
1) 𝜋1(µL)=µ1 and 𝜋2(µR)=µ2, 
2) the support of µL and µR is contained in R. 

That is, if μL(a,b)>0,then (a,b)∈R, 
and if μR(a,b)>0,then (a,b)∈R. 

3) Δε(µL,µR)≤δ



(ε,δ)-indistinguishability 
revisited

For discrete distributions we can rewrite the notion of 
ε-distance as follows:

Δε(µ1,µ2)=1/2*𝝨a∊A max(µ1(a)-eεµ2(a), µ2(E)-eεµ1(E),0)



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.20
O1 0.25
1O 0.25
11 0.30

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

µL µR

∆0(µL,µR)=0.05 
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Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
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1O 0.25
11 0.30
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O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

µL µR

∆0.3(µL,µR)=0 



Example of R-(ε,δ)-Coupling
OO O1 1O 11

OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

µL µR

∆0.3(µL,µR)=0 

max(µL(00,00)-e0.3µR(00,00),µR(00,00)-e0.3µL(00,00),0)=0
+ max(µL(01,01)-e0.3µR(01,01),µR(01,01)-e0.3µL(01,01),0)=0

+ max(µL(10,10)-e0.3µR(10,10),µR(10,10)-e0.3µL(10,10),0)=0

+ max(µL(11,11)-e0.3µR(11,11),µR(11,11)-e0.3µL(11,11),0)=0

e0.3~1.3



Example of R-(ε,δ)-Coupling

R(a,b)= {a≤b}
OO 0.2
O1 0.25
1O 0.25
11 0.3

OO 0
O1 0.40
1O 0
11 0.6

µ1 µ2

OO O1 1O 11
OO 0.20
O1 0.25
1O 0.25
11 0.30

OO O1 1O 11
OO 0.20
O1 0.20
1O 0.3
11 0.3

µL µR

∆0(µL,µR)=0.05 



Example of R-(ε,δ)-Coupling

OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0
O1 0
1O 0.5
11 0.5

µL µR



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0
O1 0
1O 0.5
11 0.5

µL µR

∆0(µL,µR)=0.5 



Example of R-(ε,δ)-Coupling

OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0
O1 0
1O 0.5
11 0.5

µL µR



Example of R-(ε,δ)-Coupling

R(a,b)= {a=b}
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0
O1 0
1O 0.5
11 0.5

µ1 µ2

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0
O1 0
1O 0.5
11 0.5

µL µR

∆1(µL,µR)=0.25 



R-(ε,δ)-Coupling  and  
Indistinguishability

Given two distributions µ1∈D(A), and µ2∈D(A), 
if we have a =-(ε,δ)-coupling between them, 
then they are (ε,δ)-indistinguishable.



Probabilistic Relational Hoare Logic 
Skip

⊢0,0skip~skip:P⇒P



Probabilistic Relational Hoare Logic 
Skip

x1:=$ Lap(ε,y1)  
~ 
x2:=$ Lap(ε,y2)  
: |y1-y2|≤1 ⇒ = 

⊢ε,0
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Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is (ε1,δ1)-DP 

M2 is (ε2,δ2)-DP 

…
Mn is (εk,δk)-DP 

The overall process is (ε1+ε2+…+εk,δ1+δ2+…+δk)-DP 



Composition
Let M1:DB →R1 be a (ε1,δ1)-differentially private program and 
M2:DB →R2 be a (ε2,δ1)-differentially private program. Then, their 
composition M1,2:DB→R1xR2 defined as

 M1,2(D)=(M1(D),M2(D)) 
is (ε1+ε2,δ1+δ2)-differentially private.



Question: Why composition is important?

Composition



Question: Why composition is important?

Composition

Answer: Because it allows to reason about privacy as a 
budget!
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CDF

q*000(D) = .3+L(1/ε1) D ∈ X10 =

X={0,1}3 ordered 
wrt binary encoding.

q*001(D) = .4+L(1/ε2)
q*010(D) = .6+L(1/ε3)
q*011(D) = .6+L(1/ε4)
q*100(D) = .6+L(1/ε5)
q*101(D) = .9+L(1/ε6)
q*110(D) = 1+L(1/ε7)
q*111(D) = 1+L(1/ε8)

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8



Marginals

q*1(D) = .4+L(1/(10*ε1))

D ∈ X10 =

q*2(D) = .3+L(1/(10*ε2))
q*3(D) = .4+L(1/(10*ε3))

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin .4+Y1 .3+Y2 .4+Y3

Budget=εglobal - ε1 - ε2 - ε3



Budget=εglobal - ε1 - ε2 - ε3

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin .4+Y1 .3+Y2 .4+Y3



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ Lap(eps,s) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

I am using the easycrypt notation here where Lap(eps,a) 
corresponds to adding to the value a noise from the  
Laplace distribution with b=1/eps and mean mu=0.



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ Lap(eps,d[i]) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r



Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and 
M2:DB →R be a (ε2,δ2)-differentially private program.  Suppose 
that we partition D in a data-independent way into two datasets 
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2)) 
is (max(ε1,ε2),max(δ1,δ2))-differentially private.



Properties of
Differential Privacy
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• Group privacy

• Composition



Some important properties

• Resilience to post-processing

• Group privacy

• Composition

We will look at them in the context of (ε,0)-differential privacy. 
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Question: Why is resilience to post-processing important?

Resilience to Post-processing

Answer: Because it is what allows us to publicly 
release the result of a differentially private analysis!
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a conjunction query qv̨on a dataset D œ X n gives the k-way

marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

qy(x) =
I

.5 ú y1 if y = x

0 otherwise

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, D

Õ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e
‘ Pr[M(DÕ) = r] (1.1)
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under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases



Question: Why is group privacy important?

Group Privacy



Question: Why is group privacy important?

Answer: Because it allows to reason about privacy at 
different level of granularities!

Group Privacy



Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy 
Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of 
epsilon: εglobal= ∑ εlocal

Also making them uniforms is 
sometimes more informative.



Budget=εglobal - ε1 - ε2 - ε3

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

εglobal= ε+ε+ε+ε+ε+ε+ε+ε=8ε

εglobal= ε+ε+ε=3ε
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