CS 591: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

From the previous classes

(ϵ, δ) -Differential Privacy

Definition

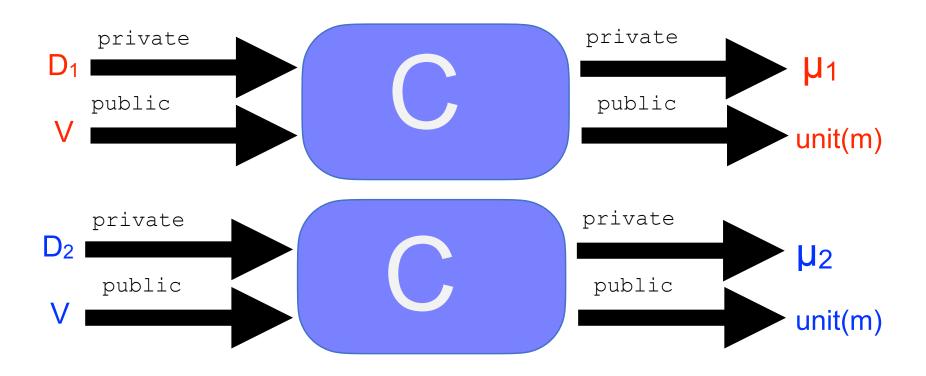
Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

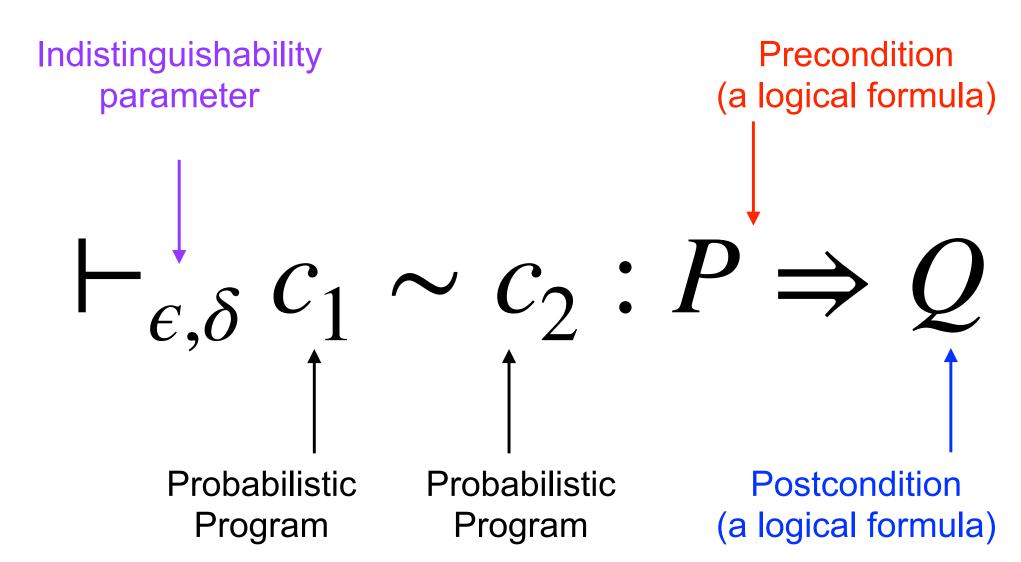
Releasing privately the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
z:=$ Laplace(sens/eps,0)
z:= (s/i)+z
return z
```

Differential Privacy as a Relational Property

- c is differentially private if and only if for every $m_1 \sim m_2$ (extending the notion of adjacency to memories):
- ${c}_{m_1}=\mu_1 \text{ and } {c}_{m_2}=\mu_2 \text{ implies } \Delta_{\epsilon}(\mu_1,\mu_2) \leq \delta$





Validity of apRHL judgments

- We say that the quadruple $\vdash_{\epsilon,\delta} c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have:
- ${c_1}_{m1} = \mu_1$ and ${c_2}_{m2} = \mu_2$ implies $Q_{\epsilon,\delta} * (\mu_1, \mu_2)$.

$R-(\varepsilon,\delta)$ -Coupling

- Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, we have an R-(ϵ,δ)-coupling between them, for R \subseteq AxB and $0 \le \delta \le 1$, $\epsilon \ge 0$, if there are two joint distributions $\mu_{L,\mu_R} \in D(AxB)$ such that:
 - 1) $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$,
 - 2) the support of µ_L and µ_R is contained in R. That is, if µ_L(a,b)>0,then (a,b)∈R, and if µ_R(a,b)>0,then (a,b)∈R.
 3) Δ_ε(µ_L,µ_R)≤δ

Example of R-(ϵ , δ)-Coupling μ_2

 μ_1

01	0.25 0.25 0.25	$R(a,b) = \{a=b\}$	01	0.20 0.25 0.25
11	0.25		11	0.30

lL	00	01	10	11	μ_R	00	01	10	
0	0.25				00	0.20			
1		0.25			01		0.25		
0			0.25		10			0.25	
11				0.25	11				

 $\Delta_{0.3} (\mu_{L}, \mu_{R}) = 0$

Example of R-(ϵ, δ)-Coupling μ_2

 μ_1

OO 0.2		000
O1 0.25	$R(a,b) = \{a \le b\}$	O1 0.40
10 0.25		10 0
11 0.3		11 0.6

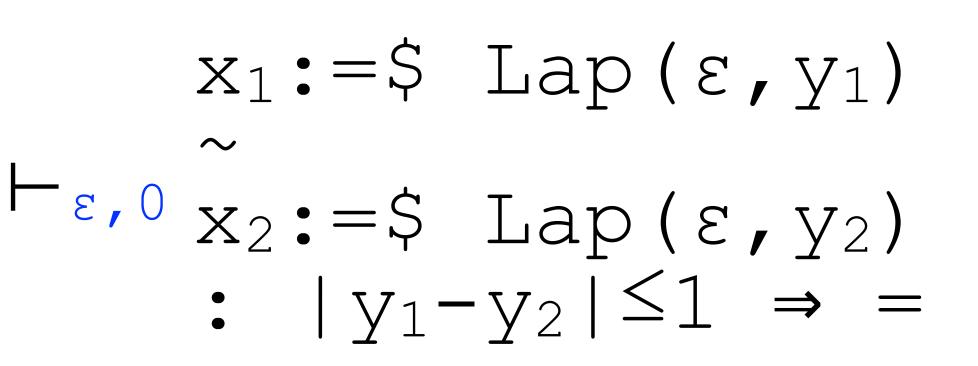
$\mu_{\rm L}$	00	01	10	11	μ_R	00	01	10	11
00		0.20			00		0.20		
01		0.25			01		0.20		
10				0.25	10				0.3
11				0.30	11				0.3

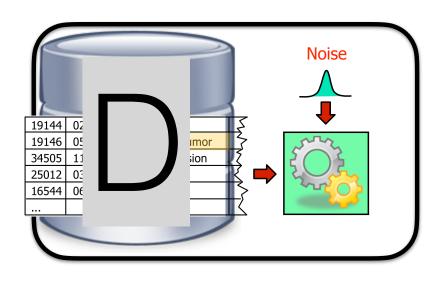
 $\Delta_0 (\mu_L, \mu_R) = 0.05$

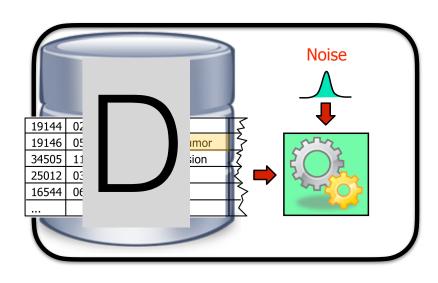
Probabilistic Relational Hoare Logic Skip

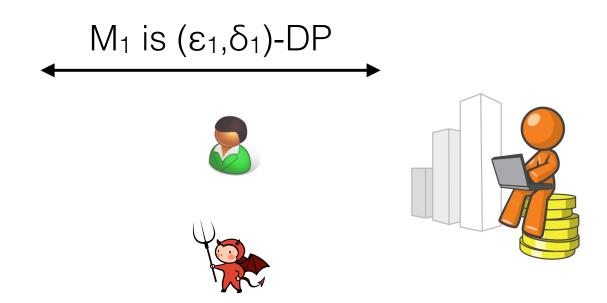
⊢_{0,0}skip~skip:P⇒P

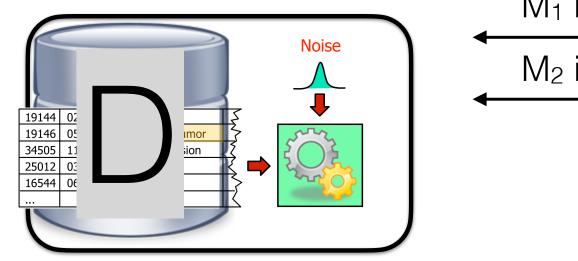
Probabilistic Relational Hoare Logic Skip

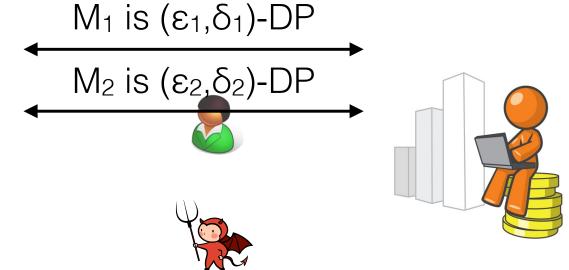


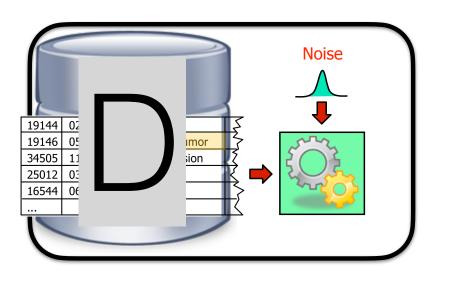


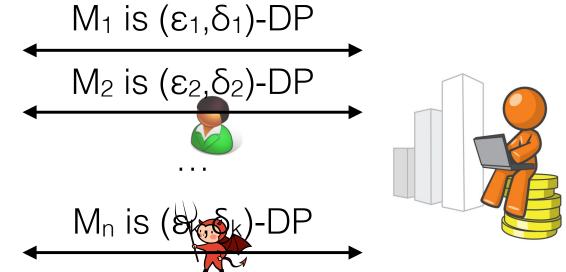


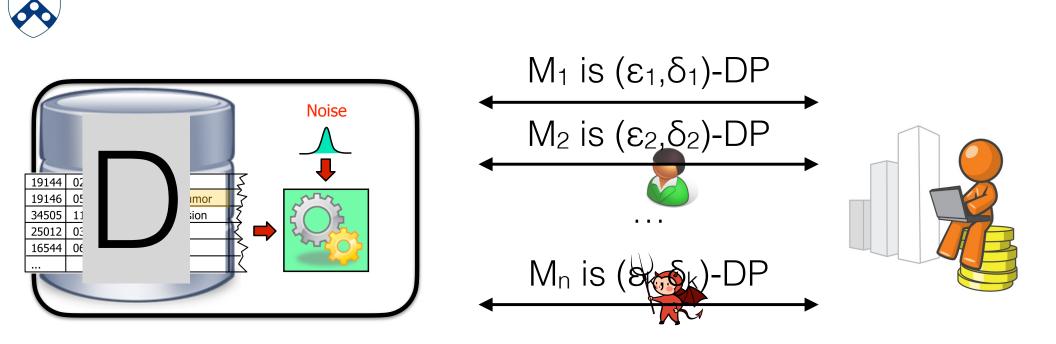












The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_k, \delta_1 + \delta_2 + \ldots + \delta_k)$ -DP

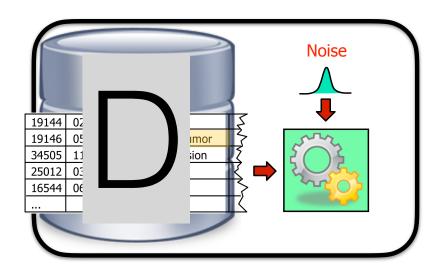
Let $M_1:DB \rightarrow R_1$ be a (ϵ_1, δ_1) -differentially private program and $M_2:DB \rightarrow R_2$ be a (ϵ_2, δ_1) -differentially private program. Then, their composition $M_{1,2}:DB \rightarrow R_1 \times R_2$ defined as $M_{1,2}(D) = (M_1(D), M_2(D))$ is $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -differentially private.

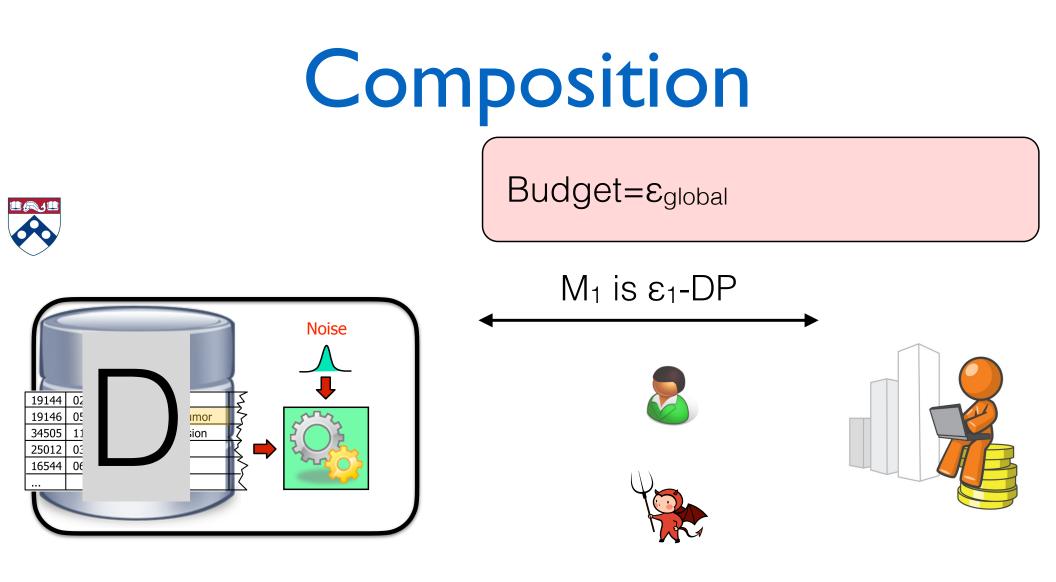
Question: Why composition is important?

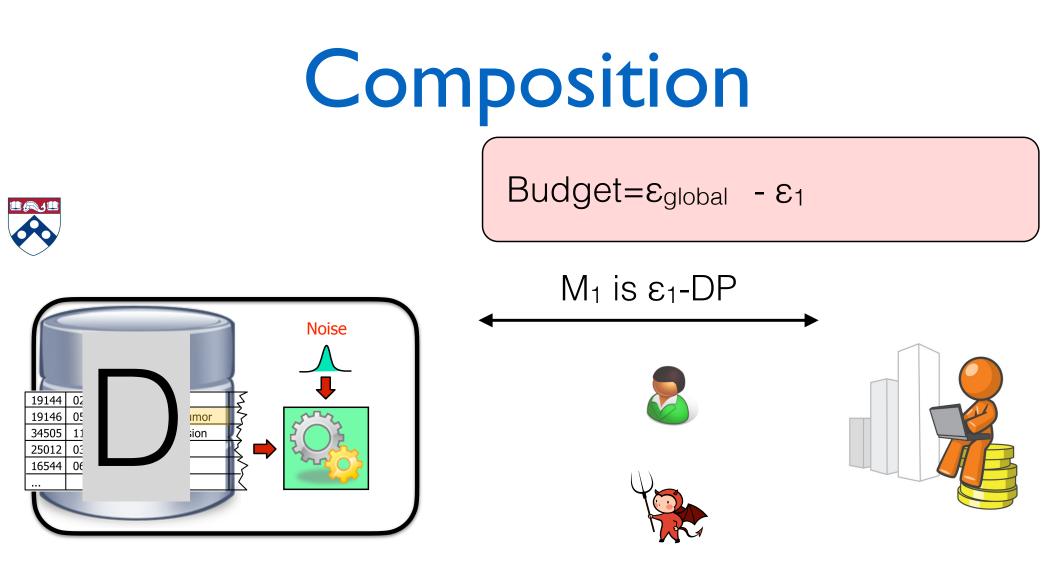
Question: Why composition is important?

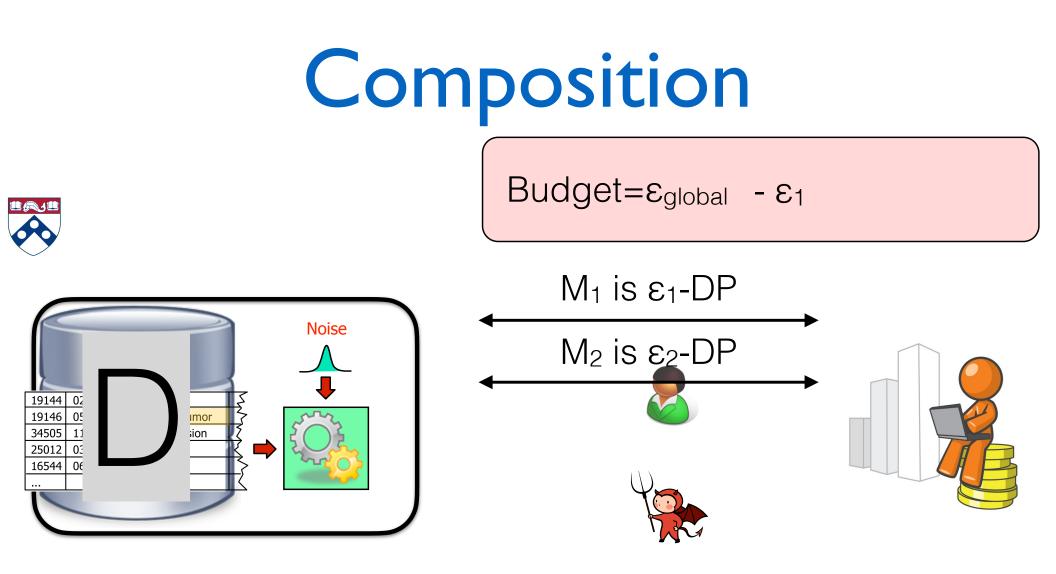
Answer: Because it allows to reason about privacy as a budget!

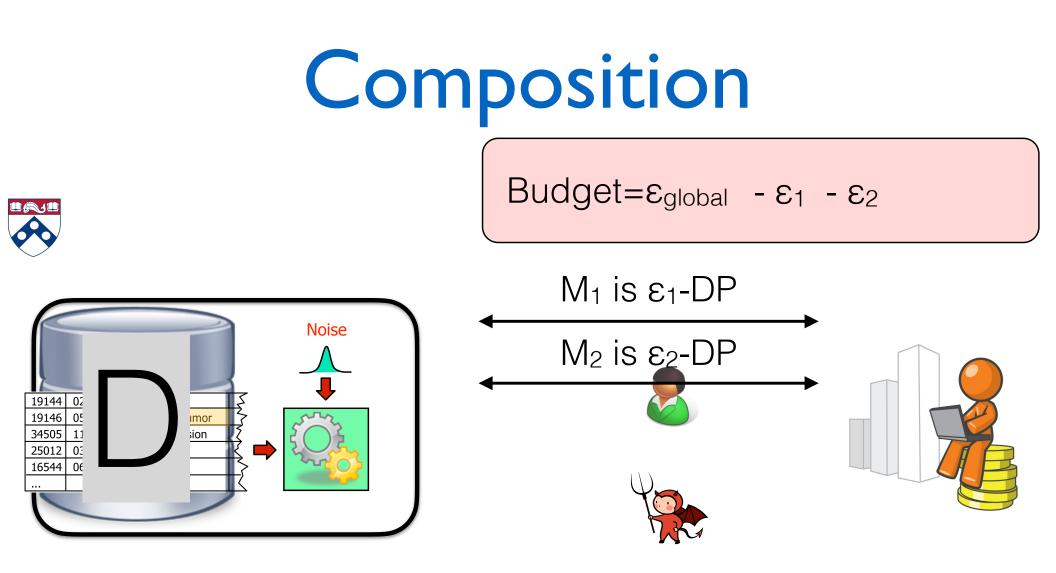
$Budget = \epsilon_{global}$



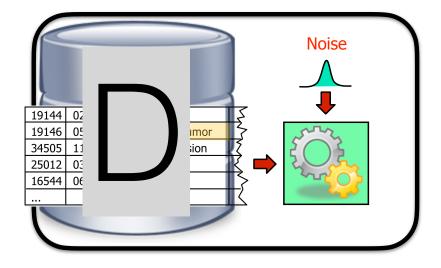


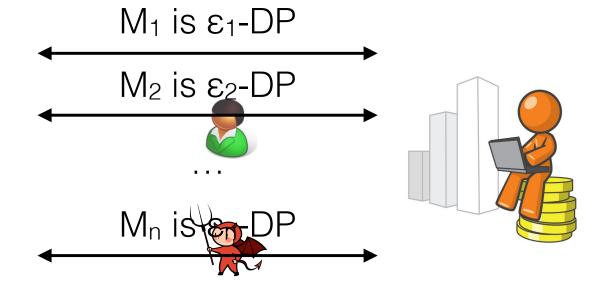




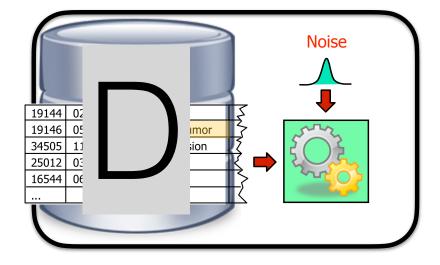


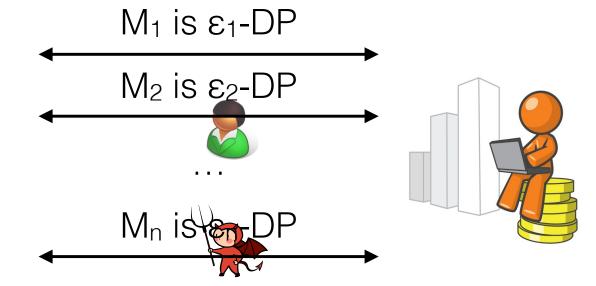
Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 ...





$$Budget = \epsilon_{global} - \epsilon_1 - \epsilon_2 \dots - \epsilon_n$$





Budget= ε_{global} - ε_1 - ε_2 - ε_3 - ε_4 $- \varepsilon_5 - \varepsilon_6 - \varepsilon_7 - \varepsilon_8$ D2 D1 D3 $X = \{0, 1\}^3$ ordered wrt binary encoding. $D \in X^{10} =$ $q^{*}_{000}(D) = .3 + L(1/\epsilon_1)$ $q_{001}^{*}(D) = .4 + L(1/\epsilon_2)$ $q_{010}^{*}(D) = .6 + L(1/\epsilon_3)$ $q_{011}^{*}(D) = .6 + L(1/\epsilon_4)$ 1.2 $q_{100}^{*}(D) = .6 + L(1/\epsilon_5)$ 0.9 $q_{101}^{*}(D) = .9 + L(1/\epsilon_6)$ 0.6 $q_{110}^{*}(D) = 1 + L(1/\epsilon_7)$ $q^{*}_{111}(D) = 1 + L(1/\epsilon_8)$ 0.3 (

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

$$\mathsf{D} \in \mathsf{X}^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{1}))$ $q_{2}^{*}(D) = .3 + L(1/(10^{*}\varepsilon_{2}))$ $q_{3}^{*}(D) = .4 + L(1/(10^{*}\varepsilon_{3}))$

	D1	D2	D3
11	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
I 6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	.4+Y ₁	.3+Y ₂	.4+Y ₃

$$\begin{array}{rrrr} Budget = \epsilon_{global} & -\epsilon_1 & -\epsilon_2 & -\epsilon_3 & -\epsilon_4 \\ & -\epsilon_5 & -\epsilon_6 & -\epsilon_7 & -\epsilon_8 \end{array}$$

$$\begin{tabular}{|c|c|c|c|c|c|} \hline D1 & D2 & D3 \\ \hline 11 & 0 & 0 & 0 \\ \hline 12 & 1 & 0 & 1 \\ \hline 13 & 0 & 1 & 0 \\ \hline 14 & 1 & 0 & 1 \\ \hline 15 & 0 & 0 & 0 \\ \hline 16 & 0 & 0 & 0 \\ \hline 16 & 0 & 0 & 1 \\ \hline 17 & 1 & 1 & 0 \\ \hline 18 & 0 & 0 & 0 \\ \hline 19 & 0 & 1 & 0 \\ \hline 19 & 0 & 1 & 0 \\ \hline 110 & 1 & 0 & 1 \\ \hline margin & .4+Y_1 & .3+Y_2 & .4+Y_3 \\ \end{tabular}$$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

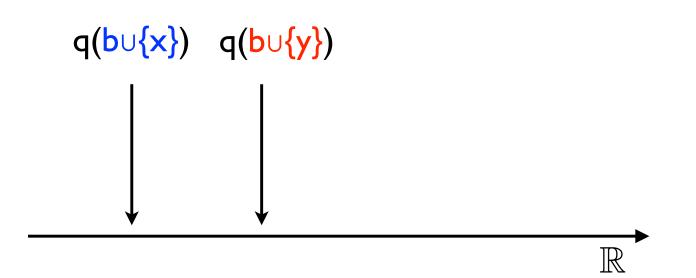
Releasing partial sums

DummySum(d : {0,1} list) : real list i:= 0; s:= 0; r:= []; while (i<size d) s:= s + d[i] z:=\$ Lap(eps,s) r:= r ++ [z]; i:= i+1; return r

I am using the easycrypt notation here where Lap(eps, a) corresponds to adding to the value a noise from the Laplace distribution with b=1/eps and mean mu=0.

Global Sensitivity

$$GS_q = \max\{ |q(D) - q(D')| \text{ s.t. } D \sim D' \}$$



Probabilistic Relational Hoare Logic Composition

$\vdash_{\epsilon_1,\delta_1C_1} \sim_{C_2} : P \Rightarrow R \vdash_{\epsilon_2,\delta_2C_1} \sim_{C_2} : R \Rightarrow S$

 $\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2C_1}; C_1' \sim C_2; C_2' : P \Rightarrow S$

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
i:=0;
s:=0;
r:=[];
while (i<size d)
z:=$ Lap(eps,d[i])
s:= s + z
r:= r ++ [s];
i:= i+1;
return r
```

Parallel Composition

Let $M_1:DB \rightarrow R$ be a (ϵ_1, δ_1) -differentially private program and $M_2:DB \rightarrow R$ be a (ϵ_2, δ_2) -differentially private program. Suppose that we partition D in a data-independent way into two datasets D₁ and D₂. Then, the composition $M_{1,2}:DB \rightarrow R$ defined as $MP_{1,2}(D)=(M_1(D_1),M_2(D_2))$ is $(\max(\epsilon_1,\epsilon_2),\max(\delta_1,\delta_2))$ -differentially private.

Probabilistic Relational Hoare Logic Composition

 $\vdash_{\epsilon_1,\delta_1C_1} \sim_{C_2} : P \Rightarrow R \vdash_{\epsilon_2,\delta_2C_1} \sim_{C_2} : R \Rightarrow S$

 $\vdash_{\epsilon_1+\epsilon_2,\delta_1+\delta_2C_1}; C_1' \sim C_2; C_2' : P \Rightarrow S$

apRHL awhile

$P/\setminus e<1>\leq 0 => \neg b1<1>$

$$\begin{split} \vdash \epsilon_k, \delta_k \text{ cl} \sim \text{c2:P/\bl<l>/\b2<2>/\k=e<l> /\ e<l>in \\ => P /\ bl<l>=b2<2> /\k < e<l> \end{split}$$

while b1 do c1~while b2 do c2

Properties of Differential Privacy

Some important properties

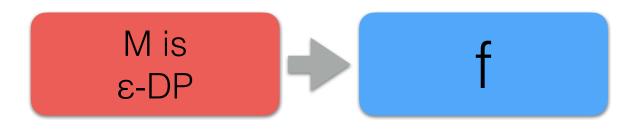
- Resilience to post-processing
- Group privacy
- Composition

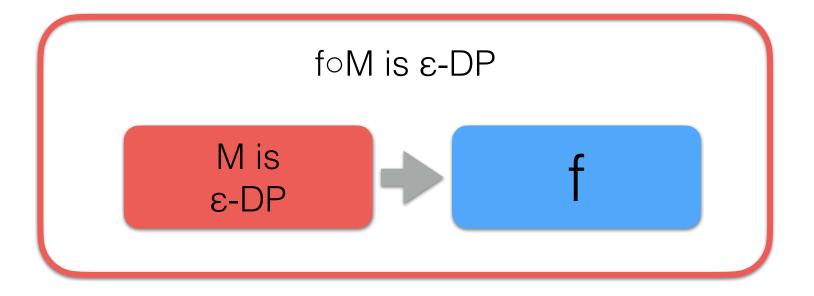
Some important properties

- Resilience to post-processing
- Group privacy
- Composition

We will look at them in the context of $(\varepsilon, 0)$ -differential privacy.

M is ε-DP

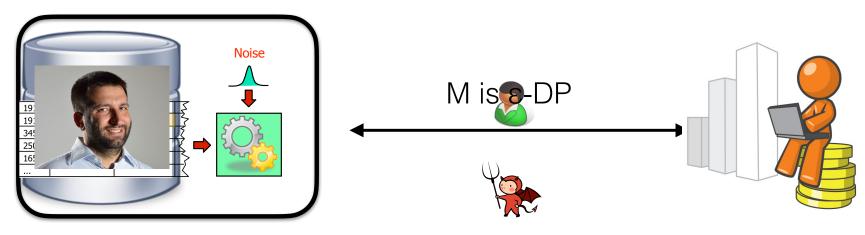




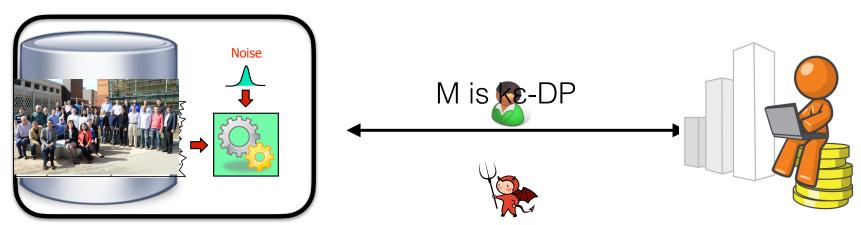
Question: Why is resilience to post-processing important?

Question: Why is resilience to post-processing important?

Answer: Because it is what allows us to publicly release the result of a differentially private analysis!



$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$



$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Question: Why is group privacy important?

Question: Why is group privacy important?

Answer: Because it allows to reason about privacy at different level of granularities!

Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy Budget: Budget= $\varepsilon_{global} - \sum \varepsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\varepsilon_{global} = \sum \varepsilon_{local}$

Also making them uniforms is sometimes more informative.

$$\begin{array}{c} 1.2 \\ 0.9 \\ 0.6 \\ 0.3 \\ 0 \\ 000 001 010 011 100 101 110 111 \end{array}$$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6 - ε_7 - ε_8

 $\epsilon_{global} = \epsilon + \epsilon + \epsilon + \epsilon + \epsilon + \epsilon + \epsilon = 8\epsilon$

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3

 $\epsilon_{global} = \epsilon + \epsilon + \epsilon = 3\epsilon$