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Where we were…



apRHL

⊢ϵ,δ c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



RNM (q1,…,qN : (data → R) list,  
     b : list data, ε: R) : nat  
  i = 0;  
  max = 0;  
  while (i < N){ 
   cur = qi(b) + Lap(1/ε) 
   if (cur > max) 
        max =  cur ;  
        output = i; 
return output;

Report Noisy Max 



apRHL: pointwise DP rule

c1~c2 :P ==> x<1> = x<2> ⊢ε,δ

c1~c2 :P ==> x<1>=r => x<2>=r ⊢ε,δr

forall r∈R

∑ δr ≤ δ



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



⊢ε1,δ1c1~c2:P⇒R ⊢ε2,δ2c1’~c2’:R⇒S
⊢ε1+ε2,δ1+δ2c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



Probabilistic Relational Hoare Logic 
Consequence

P⇒S R⇒Q
⊢ε’,δ’c1~c2:P⇒Q

⊢ε,δc1~c2:S⇒R
ε≤ε’ δ≤δ’



apRHL 
awhile

while b1 do c1~while b2 do c2  

:P/\ b1<1>=b2<2>/\ e<1> ≤ n 
 ==> P /\ ¬b1<1>/\ ¬b2<2>

⊢∑εk,∑δk

P/\ e<1>≤0 => ¬b1<1> 

c1~c2:P/\b1<1>/\b2<2>/\k=e<1> /\ e<1>≤n 
 ==> P /\ b1<1>=b2<2> /\k < e<1>

⊢εk,δk



Today: one last example 
of differentially private 

programs
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Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
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Private data

N(flue, >1955)?
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Differential Privacy:

Ensuring that the presence/absence of an individual has a
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Trade-off between utility and privacy.
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SparseVector(D,q1,…,qn,T,ε)
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How can we achieve epsilon-DP by paying  
only for the queries above T?



A first step: above threshold



it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
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designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do
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old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)
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it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂
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else i = i+ 1;
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Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
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While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
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bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.

6

2

it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
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one need to consider is = since by the definition of differential privacy we consider the same event. The
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every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
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marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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to be protected. However, the noise added to it can allow pay-
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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It doesn’t depend on the number of queries.



Above Threshold
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output;

1-sensitive queries 



Figure 1: A Selection of SVT Variants
Input/Output shared by all SVT Algorithms
Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no more than ∆, either a sequence of thresholds
T = T1, T2, · · · or a single threshold T (see footnote ∗), and c, the maximum number of queries to be answered with !.
Output: A stream of answers a1, a2, · · · , where each ai ∈ {!,⊥} ∪ R and R denotes the set of all real numbers.

Algorithm 1 An instantiation of the SVT proposed in this paper.
Input: D,Q,∆,T = T1, T2, · · · , c.
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε − ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ε2)
5: if qi(D) + νi ≥ Ti + ρ then
6: Output ai = !
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 2 SVT in Dwork and Roth 2014 [8].
Input: D,Q,∆, T, c.
1: ε1 = ε/2, ρ = Lap (c∆/ε1)
2: ε2 = ε− ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (2c∆/ε1)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !, ρ = Lap (c∆/ε2)
7: count = count + 1, Abort if count ≥ c.
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9: Output ai = ⊥

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].
Input: D,Q,∆, T, c.
1: ε1 = ε/2, ρ = Lap (∆/ε1),
2: ε2 = ε − ε1, count = 0
3: for each query qi ∈ Q do
4: νi = Lap (c∆/ε2)
5: if qi(D) + νi ≥ T + ρ then
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7: count = count + 1, Abort if count ≥ c.
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9: Output ai = ⊥

Algorithm 4 SVT in Lee and Clifton 2014 [13].
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3: for each query qi ∈ Q do
4: νi = Lap (∆/ε2)
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !
7: count = count + 1, Abort if count ≥ c.
8: else
9: Output ai = ⊥

Algorithm 5 SVT in Stoddard et al. 2014 [18].
Input: D,Q,∆, T .
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε − ε1
3: for each query qi ∈ Q do
4: νi = 0
5: if qi(D) + νi ≥ T + ρ then
6: Output ai = !
7:
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Algorithm 6 SVT in Chen et al. 2015 [1].
Input: D,Q,∆,T = T1, T2, · · · .
1: ε1 = ε/2, ρ = Lap (∆/ε1)
2: ε2 = ε− ε1
3: for each query qi ∈ Q do
4: νi = Lap (∆/ε2)
5: if qi(D) + νi ≥ Ti + ρ then
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7:
8: else
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Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6
ε1 ε/2 ε/2 ε/2 ε/4 ε/2 ε/2

Scale of threshold noise ρ ∆/ε1 c∆/ε1 ∆/ε1 ∆/ε1 ∆/ε1 ∆/ε1
Reset ρ after each output of ! (unnecessary) Yes

Scale of query noise νi 2c∆/ε2 2c∆/ε2 c∆/ε1 ∆/ε2 0 ∆/ε2
Outputting qi + νi instead of ! (not private) Yes
Outputting unbounded !’s (not private) Yes Yes

Privacy Property ε-DP ε-DP ∞-DP
(

1+6c
4 ε

)

-DP ∞-DP ∞-DP

Figure 2: Differences among Algorithms 1-6.

∗ Algorithms 1 and 6 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The other
algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having an SVT where
the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds T = T1, T2, · · · , we can
define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to obtain the same result. In this paper,
we decide to use thresholds to be consistent with the existing papers.
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it returns the index of the first index i of a query qi such that t̂  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
t̂ $ t+ Lap(✏/2);
while i  n do

q̂ $ qi(D) + Lap(✏/4);
if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
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then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
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We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
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the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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if t̂  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
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i.e. the privacy cost is independent of the number of queries.
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to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
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that Above Threshold is (✏, 0)-differentially private.
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the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Prx µL [x 2 E]  e
" Prx µR [x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
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designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
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marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µL and µR over A ⇥ B such that the first
marginal of µL and the second marginals of µR coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µL and µR is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
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some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold

AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output;



Above Threshold
|-(ε,0) 
[adj b1 b2,GS(qi)≤1,…]
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=output2]



Above Threshold
forall k, |-(ε,0) 
[adj b1 b2,GS(qi)≤1,…]  
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k]

By applying the 
pointwise rule 

we get a different post



Above Threshold
forall k, |-(ε,0) 
[adj b1 b2,GS(qi)≤1,…]  
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k]

By applying the 
pointwise rule 

we get a different post

Notice that we focus
 on a single general k.



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
[adj b1 b2,GS(qi)≤1,…]  
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can apply 

standard RHL



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
[adj b1 b2,GS(qi)≤1,…]  
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule shall

we apply?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Above Threshold

Pr
x∼AT(D)

[x = k |r−k] = Pr
nT,rk

[nT > g(D) ∧ qk(D) + rk > nT |r−k]

g(D)=maxi<k qi(D)+ri

= Pr
nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1]  
 while (i < N){ 

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Using k1=1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant] 
  <[fun x => if x=k then ε/2 else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Using k1=1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,(i1=k \/ i1<>k)] 
  <[fun x => if x=k then ε/2 else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can now proceed

by cases



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[fun x => if x=k then ε/2 else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[ε/2]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 1



Above Threshold
forall k, |-(ε/2,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k] 
  <[ε/2]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Above Threshold

Pr
x∼AT(D)

[x = k |r−k] = Pr
nT,rk

[nT > g(D) ∧ qk(D) + rk > nT |r−k]

g(D)=maxi<k qi(D)+ri

= Pr
nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k, cur2=cur1+1]   
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Choosing k1=1



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1=k, cur2=cur1+1]   
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can then reason 

by standard pRHL



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[fun x => if x=k then ε else 0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 2



Above Threshold
forall k, |-(ε,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Case 2



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){ 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k] 
  <[0]>  

   cur = qi(db) + Lap(4/ε) 
   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



apRHL 
Generalized Laplace

x1:=$ Lap(ε,e1)  
~ 
x2:=$ Lap(ε,e2)  
: |k1+e1<1>-e2<2>|≤k2  
       ==> x1<1>+k1=x<2> 

⊢k2*ε,0



Above Threshold

Pr
x∼AT(D)

[x = k |r−k] = Pr
nT,rk

[nT > g(D) ∧ qk(D) + rk > nT |r−k]

g(D)=maxi<k qi(D)+ri

= Pr
nT,rk

[nT ∈ (g(D), qk(D) + rk) |r−k]

Now let’s define: r′ k = rk + g(D) − g(D′ ) + qk(D′ ) − qk(D)
nT′ = nT + g(D) − g(D′ )

= exp(ϵ) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k] = exp(ϵ) Pr
x∼AT(D′ )

[x = k |r−k]

≤ exp(
ϵ
2

* 1 +
ϵ
4

* 2) Pr
nT′ ,r′ k

[nT ∈ (g(D′ ), qk(D′ ) + rk) |r−k]



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){  

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k,cur2≤cur1+1] 
  <[0]>

   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] Which rule 

shall we apply?



Above Threshold
forall k, |-(0,0) 
AboveT (q1,…,qk : list data → R,  
        db : list data, T:R, ε: R) : int   
  i = 1;  
  output = N; 
  nT = T + Lap(2/ε)  
  while (i < N){  

   cur = qi(db) + Lap(4/ε) 

  [adj b1 b2,GS(qi)≤1,…, nT2=nT1 + 1, invariant,i1<>k,cur2≤cur1+1] 
  <[0]>

   if (cur ≥ T /\ output = N ) 
      output = i; 
   i++ 

  return output; 
[output1=k => output2=k] We can then reason 

by standard pRHL










