
Marco Gaboardi 
gaboardi@bu.edu 

Alley Stoughton 
stough@bu.edu

CS 591: Formal Methods in 
Security and Privacy 

Proofs of Protocol Security in Real/Ideal Paradigm



Real/Ideal Paradigm
• We proved IND-CPA (indistinguishability under chosen 

plaintext attack) security of a symmetric encryption scheme 
built from a pseudorandom function plus randomness 

• Now, we’re going to consider a proof in the Real/Ideal 
Paradigm of the security of a three party cryptographic 
protocol 

• In the real/ideal paradigm there are two games: 
• A “real” game based on how the actual protocol works 
• An “ideal” game that is secure by construction 

• In the security proof we show that an Adversary can’t 
distinguish the two games—or can only distinguish them with 
negligible probability
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Private Count Retrieval Protocol
• The Private Count Retrieval (PCR) Protocol involves three 

parties: 
• a Server, which holds a database 
• a Client, which makes queries about the database 
• an untrusted Third Party (TP), which mediates between the 

Server and Client 
• A database is one-dimensional: it consists of a list of elements 
• Each query is also an element, and is a request for the count 

of the number of times it occurs in the database
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Private Count Retrieval Protocol
• For example, suppose the database is [0; 2; 0; 4; 2]. 
• If the query is 0, the answer is: 

• 2 
• If the query is 4, the answer is: 1 
• If the query is 3, the answer is: 

• 0
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Security Goals for PCR
• Informally, the goal is for: 

• Client to only learn the counts for its queries, not anything 
else about the database (we’ll limit how many queries it 
can make) 

• Server to learn nothing about the queries made by the 
Client other than the number of queries that were made 

• TP to learn nothing about the database and queries other 
than certain element patterns
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Hashing
• The PCR protocol makes use of hashing, a process 

transforming a value of some type into a bit string of a fixed 
length 
• When distinct inputs are hashed, it should be very unlikely 

that the resulting bit strings are equal 
• Given a bit string, it should be hard to find an input that 

hashes to it 
• In an implementation, we might use a member of the SHA 

family of hash functions 
• But in our proofs, we’ll model hashing via a random oracle
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PCR Protocol Operation
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Protocol Example
• E.g., suppose the original database was [0; 1; 1; 2] and 

the queries are 1, 2 and 3 
• The Server’s shuffled database might be [1; 0; 2; 1] 
• TP will get a hashed database [t2; t1; t3; t2] and hash 

tags t2, t3 and t4, and so will return to Client counts 2, 1 and 
0 (assuming no hash collisions)
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EasyCrypt Code
• On GitHub you can find: 

• All the EasyCrypt definitions and proofs 
• A link to a conference paper about PCR and its proofs 

• Joint work with Mayank Varia
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https://github.com/alleystoughton/PCR



Elements, Secrets and Hashing in EasyCrypt
• Elements (type elem) may be anything 
• Secrets (type sec) are bits strings of length sec_len 
• Hash tags (type tag) are bit strings of length tag_len 
• Hashing is done using a random oracle in which element/

secret pairs are hashed to hash tags
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Random Oracle Theory RandomOracle
module type OR = { 
  proc init() : unit 
  proc hash(inp : input) : output 
}. 

module Or : OR = { 
  var mp : (input, output) fmap 

  proc init() : unit = { 
    mp <- empty; 
  } 

  proc hash(inp : input) : output = { 
    if (! dom mp inp) { 
      mp.[inp] <$ output_distr; 
    } 
    return oget mp.[inp]; 
  } 
}. 
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Random Oracle
clone RandomOracle as RO with 
  type input <- elem * sec, 
  op input_default <- (elem_default, zeros_sec), 
  op output_len <- tag_len, 
  type output <- tag, 
  op output_default <- zeros_tag, 
  op output_distr <- tag_distr 
proof *. 
(* realization *) … (* end *) 
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Thus RO.Or with module type RO.OR is the random oracle



Random Shuffling
module Shuffle = { 
  proc shuffle(xs : elem list) : elem list = { 
    var ys : elem list; var i : int; 
    ys <- []; 
    while (0 < size xs) { 
      i <$ [0 .. size xs - 1]; 
      ys <- ys ++ [nth elem_default xs i]; 
      xs <- trim xs i; 
    } 
    return ys; 
  } 
}. 
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each of the (size xs)! reorderings 
of xs are equally possible (because 

of duplicates, some of these 
reorderings may be the same)



PCR Protocol
type db = elem list. type hdb = tag list. 

… 
type server_view = server_view_elem list. 
type tp_view = tp_view_elem list. 
type client_view = client_view_elem list. 

module type ENV = { 
  proc * init_and_get_db() : db option 
  proc get_qry() : elem option 
  proc put_qry_count(cnt : int) : unit 
  proc final() : bool 
}.
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Each party has a view 
variable that records 

everything it sees



PCR Protocol
module Protocol (Env : ENV) = { 
  module Or = RO.Or 
  … 
  proc main() : bool = { 
    var db_opt : db option; var b : bool; 
    init_views(); Or.init(); 
    server_gen_sec(); client_get_sec(); 
    db_opt <@ Env.init_and_get_db(); 
    if (db_opt <> None) { 
      server_hash_db(oget db_opt); 
      tp_get_hdb(); 
      client_loop(); 
    } 
    b <@ Env.final(); 
    return b; 
  } 
}. 
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PCR Protocol
proc client_loop() : unit = { 
  var cnt : int; var tag : tag; 
  var qry_opt : elem option; 
  var not_done : bool <- true; 
  while (not_done) { 
    qry_opt <@ Env.get_qry(); 
    cv <- cv ++ [cv_got_qry qry_opt]; 
    if (qry_opt = None) { 
      not_done <- false; 
    } else { 
      tag <@ Or.hash((oget qry_opt, client_sec)); 
      cnt <@ tp_count_tag(tag); 
      cv <- cv ++ 
            [cv_query_count(oget qry_opt, tag, cnt)]; 
      Env.put_qry_count(cnt); 
    } 
  } 
} 
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Adversarial Model
• We are modeling what is called semi-honest or honest-but curious 

security 
• In this model, the Adversary is given access to a given protocol 

party’s view—the party’s data—but it is not allowed to modify that 
data 

• The Adversary is also given access to the hash procedure of the 
random oracle — this is different from having access to its map 

• The Real and Ideal games for each protocol party are 
parameterized by the Adversary 
• The Adversary tries to learn more from the protocol’s view plus 

the hash procedure’s view of the random oracle than it should 
• At the end of the games, the Adversary returns a boolean 

judgement, trying to make the probability it returns true be as 
different as possible in the Real and Ideal games
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Real Games
• The Real Games for the Server, Third Party and Client are 

formed as specializations of Protocol 
• For a given party, we define the module type ADV of 

Adversaries for that party 
• In calls to the Adversary, the party’s current view is 

supplied 
• The Real Game GReal is 

• parameterized by Adv : ADV 
• defined by giving Protocol an environment Env made out 

of Adv
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Example: Adversary for Server
module type ADV(O : RO.OR) = { 
  proc * init_and_get_db(view : server_view) : 
    db option {O.hash} 
  proc get_qry(view : server_view) : elem option {O.hash} 
  proc qry_done(view : server_view) : unit {O.hash} 
  proc final(view : server_view) : bool {O.hash} 
}. 

• Adversary can do hashing when deciding which database 
and queries to choose 

• Queries are chosen one by one — adaptively 
• qry_done is called with server view, which does not include 

the count for the query 
• Each time the Adversary is called, it can do hashing to try to 

increase its knowledge
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Example: Real Game for Server
module GReal(Adv : ADV) = { 
  module Or = RO.Or 
  module A  = Adv(Or) 

  module Env : ENV = { 
    proc init_and_get_db() : db option = { 
      var db_opt : db option; 
      db_opt <@ A.init_and_get_db(Protocol.sv); 
      return db_opt; 
    } 

    proc get_qry() : elem option = { 
      var qry_opt : elem option; 
      qry_opt <@ A.get_qry(Protocol.sv); 
      return qry_opt; 
    } 

    proc put_qry_count(cnt : int) : unit = { 
      A.qry_done(Protocol.sv); 
    } 
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Real Game for Server
    proc final() : bool = { 
      var b : bool; 
      b <@ A.final(Protocol.sv); 
      return b; 
    } 
  } 

  proc main() : bool = { 
    var b : bool; 
    b <@ Protocol(Env).main(); 
    return b; 
  } 
}. 
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Ideal Games
• A party’s Ideal Game is also parameterized by a Simulator (in 

addition to the Adversary) 
• Simulator’s job is to convince the Adversary it’s interacting 

with the real game: it must simulate the party’s view and the 
hashing function’s view of the random oracle state 

• Because we are working information-theoretically, when 
assessing the information leakage from the Ideal Game to the 
Simulator (and thus Adversary), we don’t have to scrutinize its 
Simulator 
• It can’t learn more about the database or queries by brute 

force computation 
• In fact, in our EasyCrypt security theorems, the Simulators are 

existentially quantified
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Two Dimensional Sequences of Games
• When proving security against a protocol party, we use 

EasyCrypt’s pRHL and ambient logics to connect the party’s 
Real and Ideal Games via a sequence of games 
• Upper bound on distance between source and target 

games is sum of intermediate transitions’ upper bounds
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Reminder: Real Game for Server
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Real Game for Server
• What (if anything) can the Server learn about the queries and 

their counts? 
• We formalize this by asking what can be learned from the 

Server views that are passed to the Adversary — plus the 
ability to run the hash procedure of the random oracle 
• We can think that each time the Adversary is called, the 

Server is woken up 
• To answer and prove this, we need to formalize an Ideal 

Game
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Ideal Game for Server
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Ideal Game for Server
• The Simulator doesn’t directly learn anything about the 

queries, and so the Server views it simulates can’t convey 
anything about them either 

• And the query loop doesn’t modify the random oracle, so 
experimentation with the random oracle won’t learn anything 
either 

• But because the Server is woken up each iteration of the 
query loop, the Server does learn the number of queries
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Proof of Security Against Server
• We are able to prove perfect security: Real/Ideal games 

equally likely to return true:
lemma GReal_GIdeal : 

  exists (Sim <: SIM{GReal, GIdeal}), 

  forall (Adv <: ADV{GReal, GIdeal, Sim}) &m, 

  Pr[GReal(Adv).main() @ &m : res] = 

  Pr[GIdeal(Adv, Sim).main() @ &m : res].

• The only challenge is dealing with the redundant hashing 
performed by the Client in the Real but not the Ideal Game 

• We remove it using a variation of a technique due to Benjamin 
Grégoire
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Redundant Hashing
module type HASHING = { 
  proc hash(inp : input) : output 
  proc rhash(inp : input) : unit 
}. 

module type HASHING_ADV(H : HASHING) = { 
  proc * main() : bool {H.hash H.rhash} 
}. 
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Two implementations of HASHING, both built from a random oracle 
O:  

• NonOptHashing (``non optimized hashing''), in which rhash 
hashes its input, but discards the result 

• OptHashing (``optimized hashing’'), where rhash does 
nothing



Redundant Hashing
module GNonOptHashing(HashAdv : HASHING_ADV) = { 
  module H  = NonOptHashing(Or) 
  module HA = HashAdv(H) 
  proc main() : bool = { 
    var b : bool; 
    Or.init(); b <@ HA.main(); 
    return b; 
  } 
}. 

module GOptHashing(HashAdv : HASHING_ADV) = { 
  module H  = OptHashing(Or) 
  module HA = HashAdv(H) 
  proc main() : bool = { 
    var b : bool; 
    Or.init(); b <@ HA.main(); 
    return b; 
  } 
}.
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Redundant Hashing
lemma GNonOptHashing_GOptHashing 
        (HashAdv <: HASHING_ADV{Or}) &m : 
  Pr[GNonOptHashing(HashAdv).main() @ &m : res] = 
  Pr[GOptHashing(HashAdv).main() @ &m : res]. 
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• Proof intuition: redundant hashing can be put off until it’s 
superseded by hash or no longer necessary 

• Proof uses EasyCrypt’s eager tactics 

• To use in Server proof, we define a concrete adversary 
HashAdv in such a way that the left side of the gap in the 
sequence of games proof can be connected with 
GNonOptHashing(HashAdv), and GOptHashing(HashAdv) 
can be connected with the right side of the gap



Next Class: Third 
Party and Client Ideal 

Games and Proofs


