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Real/Ideal Paradigm
• We’re considering a proof in the Real/Ideal Paradigm of the 

security of a three party cryptographic protocol 
• In the real/ideal paradigm there are two games: 

• A “real” game based on how the actual protocol works 
• An “ideal” game that is secure by construction 

• In the security proof we show that an Adversary can’t 
distinguish the two games—or can only distinguish them with 
negligible probability
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Private Count Retrieval Protocol
• The Private Count Retrieval (PCR) Protocol involves three 

parties: 
• a Server, which holds a database 
• a Client, which makes queries about the database 
• an untrusted Third Party (TP), which mediates between the 

Server and Client 
• A database is one-dimensional: it consists of a list of elements 
• Each query is also an element, and is a request for the count 

of the number of times it occurs in the database
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Security Goals for PCR
• Informally, the goal is for: 

• Client to only learn the counts for its queries, not anything 
else about the database (we’ll limit how many queries it 
can make) 

• Server to learn nothing about the queries made by the 
Client other than the number of queries that were made 

• TP to learn nothing about the database and queries other 
than certain element patterns
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PCR Protocol Operation
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EasyCrypt Code
• On GitHub you can find: 

• All the EasyCrypt definitions and proofs 
• A link to a conference paper about PCR and its proofs 

• Joint work with Mayank Varia
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Elements, Secrets and Hashing in EasyCrypt
• Elements (type elem) may be anything 
• Secrets (type sec) are bits strings of length sec_len 
• Hash tags (type tag) are bit strings of length tag_len 
• Hashing is done using a random oracle in which element/

secret pairs are hashed to hash tags
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Random Oracle Theory RandomOracle
module type OR = { 
  proc init() : unit 
  proc hash(inp : input) : output 
}. 

module Or : OR = { 
  var mp : (input, output) fmap 

  proc init() : unit = { 
    mp <- empty; 
  } 

  proc hash(inp : input) : output = { 
    if (! dom mp inp) { 
      mp.[inp] <$ output_distr; 
    } 
    return oget mp.[inp]; 
  } 
}. 
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Random Oracle
clone RandomOracle as RO with 
  type input <- elem * sec, 
  op input_default <- (elem_default, zeros_sec), 
  op output_len <- tag_len, 
  type output <- tag, 
  op output_default <- zeros_tag, 
  op output_distr <- tag_distr 
proof *. 
(* realization *) … (* end *) 
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Thus RO.Or with module type RO.OR is the random oracle



Random Shuffling
module Shuffle = { 
  proc shuffle(xs : elem list) : elem list = { 
    var ys : elem list; var i : int; 
    ys <- []; 
    while (0 < size xs) { 
      i <$ [0 .. size xs - 1]; 
      ys <- ys ++ [nth elem_default xs i]; 
      xs <- trim xs i; 
    } 
    return ys; 
  } 
}. 
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each of the (size xs)! reorderings 
of xs are equally possible (because 

of duplicates, some of these 
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PCR Protocol
type db = elem list. type hdb = tag list. 

… 
type server_view = server_view_elem list. 
type tp_view = tp_view_elem list. 
type client_view = client_view_elem list. 

module type ENV = { 
  proc * init_and_get_db() : db option 
  proc get_qry() : elem option 
  proc put_qry_count(cnt : int) : unit 
  proc final() : bool 
}.
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PCR Protocol
module Protocol (Env : ENV) = { 
  module Or = RO.Or 
  … 
  proc main() : bool = { 
    var db_opt : db option; var b : bool; 
    init_views(); Or.init(); 
    server_gen_sec(); client_get_sec(); 
    db_opt <@ Env.init_and_get_db(); 
    if (db_opt <> None) { 
      server_hash_db(oget db_opt); 
      tp_get_hdb(); 
      client_loop(); 
    } 
    b <@ Env.final(); 
    return b; 
  } 
}. 
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PCR Protocol
proc client_loop() : unit = { 
  var cnt : int; var tag : tag; 
  var qry_opt : elem option; 
  var not_done : bool <- true; 
  while (not_done) { 
    qry_opt <@ Env.get_qry(); 
    cv <- cv ++ [cv_got_qry qry_opt]; 
    if (qry_opt = None) { 
      not_done <- false; 
    } else { 
      tag <@ Or.hash((oget qry_opt, client_sec)); 
      cnt <@ tp_count_tag(tag); 
      cv <- cv ++ 
            [cv_query_count(oget qry_opt, tag, cnt)]; 
      Env.put_qry_count(cnt); 
    } 
  } 
} 
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Adversarial Model
• We are modeling what is called semi-honest or honest-but curious 

security 
• In this model, the Adversary is given access to a given protocol 

party’s view—the party’s data—but it is not allowed to modify that 
data 

• The Adversary is also given access to the hash procedure of the 
random oracle — this is different from having access to its map 

• The Real and Ideal games for each protocol party are 
parameterized by the Adversary 
• The Adversary tries to learn more from the protocol’s view plus 

the hash procedure’s view of the random oracle than it should 
• At the end of the games, the Adversary returns a boolean 

judgement, trying to make the probability it returns true be as 
different as possible in the Real and Ideal games
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Real Games
• The Real Games for the Server, Third Party and Client are 

formed as specializations of Protocol 
• For a given party, we define the module type ADV of 

Adversaries for that party 
• In calls to the Adversary, the party’s current view is 

supplied 
• The Real Game GReal is 

• parameterized by Adv : ADV 
• defined by giving Protocol an environment Env made out 

of Adv
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Example: Adversary for Server
module type ADV(O : RO.OR) = { 
  proc * init_and_get_db(view : server_view) : 
    db option {O.hash} 
  proc get_qry(view : server_view) : elem option {O.hash} 
  proc qry_done(view : server_view) : unit {O.hash} 
  proc final(view : server_view) : bool {O.hash} 
}. 

• Adversary can do hashing when deciding which database 
and queries to choose 

• Queries are chosen one by one — adaptively 
• qry_done is called with server view, which does not include 

the count for the query 
• Each time the Adversary is called, it can do hashing to try to 

increase its knowledge
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Example: Real Game for Server
module GReal(Adv : ADV) = { 
  module Or = RO.Or 
  module A  = Adv(Or) 

  module Env : ENV = { 
    proc init_and_get_db() : db option = { 
      var db_opt : db option; 
      db_opt <@ A.init_and_get_db(Protocol.sv); 
      return db_opt; 
    } 

    proc get_qry() : elem option = { 
      var qry_opt : elem option; 
      qry_opt <@ A.get_qry(Protocol.sv); 
      return qry_opt; 
    } 

    proc put_qry_count(cnt : int) : unit = { 
      A.qry_done(Protocol.sv); 
    } 
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Real Game for Server
    proc final() : bool = { 
      var b : bool; 
      b <@ A.final(Protocol.sv); 
      return b; 
    } 
  } 

  proc main() : bool = { 
    var b : bool; 
    b <@ Protocol(Env).main(); 
    return b; 
  } 
}. 
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Ideal Games
• A party’s Ideal Game is also parameterized by a Simulator (in 

addition to the Adversary) 
• Simulator’s job is to convince the Adversary it’s interacting 

with the real game: it must simulate the party’s view and the 
hashing function’s view of the random oracle state 

• Because we are working information-theoretically, when 
assessing the information leakage from the Ideal Game to the 
Simulator (and thus Adversary), we don’t have to scrutinize its 
Simulator 
• It can’t learn more about the database or queries by brute 

force computation 
• In fact, in our EasyCrypt security theorems, the Simulators are 

existentially quantified
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Reminder: Real Game for Server
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Real Game for Server
• What (if anything) can the Server learn about the queries and 

their counts? 
• We formalize this by asking what can be learned from the 

Server views that are passed to the Adversary — plus the 
ability to run the hash procedure of the random oracle 
• We can think that each time the Adversary is called, the 

Server is woken up 
• To answer and prove this, we need to formalize an Ideal 

Game
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Ideal Game for Server
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Ideal Game for Server
• The Simulator doesn’t directly learn anything about the 

queries, and so the Server views it simulates can’t convey 
anything about them either 

• And the query loop doesn’t modify the random oracle, so 
experimentation with the random oracle won’t learn anything 
either 

• But because the Server is woken up each iteration of the 
query loop, the Server does learn the number of queries
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Proof of Security Against Server
• We are able to prove perfect security: Real/Ideal games 

equally likely to return true:
lemma GReal_GIdeal : 

  exists (Sim <: SIM{GReal, GIdeal}), 

  forall (Adv <: ADV{GReal, GIdeal, Sim}) &m, 

  Pr[GReal(Adv).main() @ &m : res] = 

  Pr[GIdeal(Adv, Sim).main() @ &m : res].

• The only challenge is dealing with the redundant hashing 
performed by the Client in the Real but not the Ideal Game 

• We remove it using a variation of a technique due to Benjamin 
Grégoire
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Next: Ideal Games 
and Proofs for 

Third Party and Client



Ideal Game for Third Party
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Ideal Game for Third Party
• The Adversary is invoked with the TP’s view when the database 

and queries are requested by the game and client loop 
• In the Ideal Game, Adversary only learns patterns, not anything 

more about the database and queries 
• It doesn’t have access to the private random oracle used by 

Server/Client 
• So even though the database and queries were used to 

derive the hashed database [t1; …; tn] and query tags 
s1, …, sm, these tags were all randomly (but consistently) 
chosen, and so convey no information about the particular 
elements 

• And the Server’s random shuffling means it doesn’t learn 
anything about the order of the database
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Security Against Third Party
• E.g., suppose the original database was [0; 1; 1; 2] 
• The Server’s shuffled database might be [1; 0; 2; 1] 
• In the Real Game, TP will get a hashed database [t2, t1, 
t3, t2], where t1 = hash(0, sec), t2 = hash(1, 
sec) and t3 = hash(2, sec) — for the shared Server/
Client sec 

• In the Ideal Game, TP will get a hashed database with the 
same pattern, [s2; s1; s3; s2], but where the si have no 
connection with hash or sec 

• In order to tell the games apart, we can prove it has to guess 
sec, i.e., call hash with a pair whose second component is 
sec
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Security Against Third Party
• To try to differentiate the games, the Adversary can pick a 

database with a large number of distinct elements, where 
each element appears a different number of times (e.g., [0; 
1; 1; 2; 2; 2; …]). 

• When given (in TP’s view) the hashed database that was 
created in the Real or Ideal Game from shuffling the database 
and then hashing its elements (either paired with sec in the 
random oracle, or in the private random oracle), it can 
(assuming no hash collisions) match the resulting tags t with 
their elements e. 

• Given a particular (e, t) pair, it can search for a sec’ such 
that hashing (e, sec’) results in t. When it finds one, it 
can check that the rest of the hashed database is consistent 
with sec’. Otherwise it can try another choice of sec’.
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Security Against Third Party
• This process is guaranteed to succeed in the Real Game, it’s 

highly unlikely to succeed in the Ideal Game 
• In any event, if the Adversary never calls the random oracle 

with a pair whose second component is sec, we can prove it 
will fail to distinguish the Real and Ideal Games
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Proof of Security Against Third Party
• To obtain a security theorem, we must limit (limit) the 

number of distinct inputs the Adversary may hash 
• The Server and Client are unrestricted 

• We use a cryptographic reduction to bridge the Real and 
Ideal Games — one proved with up-to-bad reasoning, and so 
— that makes us assume the Adversary’s procedures are 
lossless (always terminating), and prove that the Client Loop 
always terminates 
• When we form GReal and GIdeal, we terminate the Client 

Loop after qrys_max steps (in GReal, by returning None 
from the environment’s get_qry procedure) 
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Proof of Security Against Third Party
• Here is the relevant part of the Environment for GReal: 

  module Env : ENV = { 
    var qrys_ctr : int 

    ... 

    proc get_qry() : elem option = { 

      var qry_opt : elem option; 

      qry_opt <@ A.get_qry(Protocol.tpv); 

      if (qry_opt <> None) { 

        if (qrys_ctr < qrys_max) { qrys_ctr <- qrys_ctr + 1; } 

        else { qry_opt <- None; } 

      } 

      return qry_opt; 

    } 

  }

45



• We reduce security against TP to the security of a new 
abstraction, “Secrecy Random Oracles” 
• They offer limited (limit) hashing of element/secret pairs 

(what Adversary does), as well as unlimited hashing of 
elements (what Server and Client do) 

• “Dependent” implementation with single map, where 
hashing an element is same as hashing pair of it and sec 
— connection with Real Game

• “Independent” implementation with separate maps — 
connection with Ideal Game 

• We prove that a Secrecy Adversary can only tell the games 
involving the two implementations apart if it does limited 
hashing of a pair whose second component is sec

Third Party Proof
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• The Secrecy Random Oracles proof is carried out using up-
to-bad reasoning 

• As long as the Secrecy Adversary doesn’t do limited hashing 
with a pair with right side sec (the “bad” event), we can 
maintain an invariant: 
• keeping the non-sec-part of the map of the dependent 

implementation in sync with the non-sec-part of the elem 
* sec map of the independent  implementation; and 

• keeping the sec-part of the map of the dependent 
implementation in sync with the elem map of the 
independent implementation

Third Party Proof
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• We reduce the upper-bounding of the probability of the bad 
event holding to a lemma about another new abstraction, 
“Secret Guessing Oracles” 
• It gives the adversary limited (limit) number of chances 

to guess sec 
• EasyCrypt’s pHL is used to upper bound the probability of 

the adversary winning by 

limit / 2sec_len

• Both the Secrecy Random Oracles and Secret Guessing 
Oracles definitions and proofs are packaged up into reusable 
theories

Third Party Proof

48



• The theorem for security against the TP upper-bounds the 
distance between the probabilities of the Real and Ideal 
Games returning true by 

limit / 2sec_len

Third Party Proof
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Reminder: Real Game for Client
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Ideal Game for Client
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Proof of Security Against Client
• The Adversary can distinguish the Real and Ideal Games by 

causing or forcing a hash collision 
• If it can find distinct elem and elem’ such that (elem, 
sec) and (elem’, sec) hash to the same hash tag, tag, 
then it can let db = [elem] and the only query be elem’ 
• In Real Game, count will be 

• 1 
• In Ideal Game, count will be 

• 0 
• It can let db be a list of distinct elements of greater length 

than number of distinct hash tags, and work through that 
same list of elements as queries
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Proof of Security Against Client
• Thus we must impose a hashing budget on the Adversary — 

not just on the hashing it does directly, but also on the 
hashing it makes Server and Client do: 
• adv_budget — distinct hashing done by Adversary 
• db_uniqs_max — maximum number of distinct elements 

in database 
• qrys_max — maximum number of queries 

• budget = adv_budget + db_uniqs_max + qrys_max 
• If Adversary doesn’t respect budget, we terminate game early 

(we terminate the Client Loop after qrys_max steps) 
• Because the proof uses up-to-bad reasoning, we need that 

Adversary is always terminating and Client Loop terminates
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Proof of Security Against Client
• We have Budgeted Random Oracles, which provide: 

• separate budgeted hashing functions for the Adversary, 
Server and Client 
• set a flag when over budget, but keep working 
• for Adversary and Server, only distinct inputs matter, but 

for Client its the number of hashes 
• ordinary (unrestricted) hashing (which the Adversary uses 

before making its final judgement) 
• There are two implementations of budgeted random oracles: 

• a “collision-possible” one in which hash collisions may 
occur 

• a “collision-free-while-within-budget” one in which hash 
collisions don’t happen if only budgeted hashing is done 
and the individual budgets are respected
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Proof of Security Against Client
• Each move back and forth between the collision-possible and 

collision-free-while-within-budget versions incurs a penalty of 
(budget * (budget - 1)) / 2tag_len + 1 

• This is proved using up-to-bad reasoning, where the “bad” 
event is when a collision occurs 

• EasyCrypt’s failure event lemma and pHL are used to bound 
the probability that failure occurs 

• The proof is packaged into a reusable theory
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Client Proof
• Move to collision-possible budgeted random oracle 
• Move to collision-free-while-within-budget random oracle 
• Use complex relational invariant to switch to Server, TP and 

Client using an elements counts map instead of hashed 
database (but Server still does hashing) 

• Switch back to collision-possible budgeted random oracle 
• Switch back to ordinary random oracle (Adversary still 

subjected to budget) 
• Get rid of Server’s hashing, which is now seen to be 

redundant 
• Show that computing elements counts map works out same 

without first shuffling database 
• Final refactoring
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Client Proof
• Theorem for security against the Client upper bounds the 

distance between the probabilities of the Real and Ideal 
Games returning true by 

(budget * (budget - 1)) / 2tag_len

     which is two times 
(budget * (budget - 1)) / 2tag_len + 1
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Summary/Lessons Learned
• Size of EasyCrypt formalization: 

• About 380 lines of theorem statements and relevant 
definitions (random oracles, protocol definition, etc.) 

• About 5,275 lines of proof (which one can trust EasyCrypt 
to check) 

• Two-dimensional game structure very useful 
• Formalizing Protocol once — parameterized by Environment 

— and then specializing to Real Games works well 
• Because we work information-theoretically, Simulators are 

existentially quantified (so part of proof, not specification) 
• Removing redundant hashing was crucial, and our version of 

Grégoire’s technique was proved once and used twice
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Summary/Lessons Learned
• Use of budgeted random oracles in Client proof let us do the 

hard step of the proof without worrying about hash collisions 
• EasyCrypt made it easy to obtain concrete upper bounds in 

terms of game parameters on the distances between real and 
ideal games
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Discussion
• Q: In the PIR Protocol, does the Client always get correct 

counts for its queries? 
• A: Not in the highly unlikely event of hash collisions 

• Q: Why do we let the Adversary choose the database and 
queries? 
• A: This models how it may have inside information about 

what elements (e.g., people’s names) are likely to appear 
in the database or in queries 
• E.g., TP, when analyzing the tags it sees, might guess 

that a tag appearing numerous times corresponds to 
“Alice”, based on knowledge of an organization. But it 
won’t be able to confirm that guess.
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Discussion
• Q: Is it realistic to assume two parties can communicate, 

without the other one eavesdropping? 
• A: Yes. The Adversary works on behalf of a given party, 

and has no special access to the network
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Discussion
• Q: Are the restrictions we place on the Adversary realistic? 

• A: Server: 
• No restrictions 

• A: TP: 
• Limit on distinct hashes 

• A: Client: 
• Budget for Adversary’s distinct hashing 
• Budget on number of distinct elements in database 
• Budget on number of queries
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Questions?


