
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Proofs of Protocol Security in Real/Ideal Paradigm

From the Previous
Class

Real/Ideal Paradigm
• We’re considering a proof in the Real/Ideal Paradigm of the

security of a three party cryptographic protocol
• In the real/ideal paradigm there are two games:

• A “real” game based on how the actual protocol works
• An “ideal” game that is secure by construction

• In the security proof we show that an Adversary can’t
distinguish the two games—or can only distinguish them with
negligible probability

3

Private Count Retrieval Protocol
• The Private Count Retrieval (PCR) Protocol involves three

parties:
• a Server, which holds a database
• a Client, which makes queries about the database
• an untrusted Third Party (TP), which mediates between the

Server and Client
• A database is one-dimensional: it consists of a list of elements
• Each query is also an element, and is a request for the count

of the number of times it occurs in the database

4

Security Goals for PCR
• Informally, the goal is for:

• Client to only learn the counts for its queries, not anything
else about the database (we’ll limit how many queries it
can make)

• Server to learn nothing about the queries made by the
Client other than the number of queries that were made

• TP to learn nothing about the database and queries other
than certain element patterns

5

PCR Protocol Operation

6

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

7

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

8

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

secrets are
bit strings of

length sec_len

PCR Protocol Operation

9

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

10

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

random
shuffle

PCR Protocol Operation

11

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
elem/sec

pairs

tags are
bit strings of

length tag_len

PCR Protocol Operation

12

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

13

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

14

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
qry/sec

PCR Protocol Operation

15

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

16

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

17

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

PCR Protocol Operation

18

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

final result

EasyCrypt Code
• On GitHub you can find:

• All the EasyCrypt definitions and proofs
• A link to a conference paper about PCR and its proofs

• Joint work with Mayank Varia

19

https://github.com/alleystoughton/PCR

Elements, Secrets and Hashing in EasyCrypt
• Elements (type elem) may be anything
• Secrets (type sec) are bits strings of length sec_len
• Hash tags (type tag) are bit strings of length tag_len
• Hashing is done using a random oracle in which element/

secret pairs are hashed to hash tags

20

Random Oracle Theory RandomOracle
module type OR = {
 proc init() : unit
 proc hash(inp : input) : output
}.

module Or : OR = {
 var mp : (input, output) fmap

 proc init() : unit = {
 mp <- empty;
 }

 proc hash(inp : input) : output = {
 if (! dom mp inp) {
 mp.[inp] <$ output_distr;
 }
 return oget mp.[inp];
 }
}.

21

Random Oracle
clone RandomOracle as RO with
 type input <- elem * sec,
 op input_default <- (elem_default, zeros_sec),
 op output_len <- tag_len,
 type output <- tag,
 op output_default <- zeros_tag,
 op output_distr <- tag_distr
proof *.
(* realization *) … (* end *)

22

Thus RO.Or with module type RO.OR is the random oracle

Random Shuffling
module Shuffle = {
 proc shuffle(xs : elem list) : elem list = {
 var ys : elem list; var i : int;
 ys <- [];
 while (0 < size xs) {
 i <$ [0 .. size xs - 1];
 ys <- ys ++ [nth elem_default xs i];
 xs <- trim xs i;
 }
 return ys;
 }
}.

23

each of the (size xs)! reorderings
of xs are equally possible (because

of duplicates, some of these
reorderings may be the same)

PCR Protocol
type db = elem list. type hdb = tag list.

…
type server_view = server_view_elem list.
type tp_view = tp_view_elem list.
type client_view = client_view_elem list.

module type ENV = {
 proc * init_and_get_db() : db option
 proc get_qry() : elem option
 proc put_qry_count(cnt : int) : unit
 proc final() : bool
}.

24

Each party has a view
variable that records

everything it sees

PCR Protocol
module Protocol (Env : ENV) = {
 module Or = RO.Or
 …
 proc main() : bool = {
 var db_opt : db option; var b : bool;
 init_views(); Or.init();
 server_gen_sec(); client_get_sec();
 db_opt <@ Env.init_and_get_db();
 if (db_opt <> None) {
 server_hash_db(oget db_opt);
 tp_get_hdb();
 client_loop();
 }
 b <@ Env.final();
 return b;
 }
}.

25

PCR Protocol
proc client_loop() : unit = {
 var cnt : int; var tag : tag;
 var qry_opt : elem option;
 var not_done : bool <- true;
 while (not_done) {
 qry_opt <@ Env.get_qry();
 cv <- cv ++ [cv_got_qry qry_opt];
 if (qry_opt = None) {
 not_done <- false;
 } else {
 tag <@ Or.hash((oget qry_opt, client_sec));
 cnt <@ tp_count_tag(tag);
 cv <- cv ++
 [cv_query_count(oget qry_opt, tag, cnt)];
 Env.put_qry_count(cnt);
 }
 }
}

26

Adversarial Model
• We are modeling what is called semi-honest or honest-but curious

security
• In this model, the Adversary is given access to a given protocol

party’s view—the party’s data—but it is not allowed to modify that
data

• The Adversary is also given access to the hash procedure of the
random oracle — this is different from having access to its map

• The Real and Ideal games for each protocol party are
parameterized by the Adversary
• The Adversary tries to learn more from the protocol’s view plus

the hash procedure’s view of the random oracle than it should
• At the end of the games, the Adversary returns a boolean

judgement, trying to make the probability it returns true be as
different as possible in the Real and Ideal games

27

Real Games
• The Real Games for the Server, Third Party and Client are

formed as specializations of Protocol
• For a given party, we define the module type ADV of

Adversaries for that party
• In calls to the Adversary, the party’s current view is

supplied
• The Real Game GReal is

• parameterized by Adv : ADV
• defined by giving Protocol an environment Env made out

of Adv

28

Example: Adversary for Server
module type ADV(O : RO.OR) = {
 proc * init_and_get_db(view : server_view) :
 db option {O.hash}
 proc get_qry(view : server_view) : elem option {O.hash}
 proc qry_done(view : server_view) : unit {O.hash}
 proc final(view : server_view) : bool {O.hash}
}.

• Adversary can do hashing when deciding which database
and queries to choose

• Queries are chosen one by one — adaptively
• qry_done is called with server view, which does not include

the count for the query
• Each time the Adversary is called, it can do hashing to try to

increase its knowledge

29

Example: Real Game for Server
module GReal(Adv : ADV) = {
 module Or = RO.Or
 module A = Adv(Or)

 module Env : ENV = {
 proc init_and_get_db() : db option = {
 var db_opt : db option;
 db_opt <@ A.init_and_get_db(Protocol.sv);
 return db_opt;
 }

 proc get_qry() : elem option = {
 var qry_opt : elem option;
 qry_opt <@ A.get_qry(Protocol.sv);
 return qry_opt;
 }

 proc put_qry_count(cnt : int) : unit = {
 A.qry_done(Protocol.sv);
 }

30

Real Game for Server
 proc final() : bool = {
 var b : bool;
 b <@ A.final(Protocol.sv);
 return b;
 }
 }

 proc main() : bool = {
 var b : bool;
 b <@ Protocol(Env).main();
 return b;
 }
}.

31

Ideal Games
• A party’s Ideal Game is also parameterized by a Simulator (in

addition to the Adversary)
• Simulator’s job is to convince the Adversary it’s interacting

with the real game: it must simulate the party’s view and the
hashing function’s view of the random oracle state

• Because we are working information-theoretically, when
assessing the information leakage from the Ideal Game to the
Simulator (and thus Adversary), we don’t have to scrutinize its
Simulator
• It can’t learn more about the database or queries by brute

force computation
• In fact, in our EasyCrypt security theorems, the Simulators are

existentially quantified

32

Reminder: Real Game for Server

33

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

Environment
discards count
before calling

Adversary

Real Game for Server
• What (if anything) can the Server learn about the queries and

their counts?
• We formalize this by asking what can be learned from the

Server views that are passed to the Adversary — plus the
ability to run the hash procedure of the random oracle
• We can think that each time the Adversary is called, the

Server is woken up
• To answer and prove this, we need to formalize an Ideal

Game

34

Ideal Game for Server

35

Adversary

Simulator Client

Main

db

db res res

qry

done

no hashing
generates secret,

does shuffling,
hashing

Ideal Game for Server
• The Simulator doesn’t directly learn anything about the

queries, and so the Server views it simulates can’t convey
anything about them either

• And the query loop doesn’t modify the random oracle, so
experimentation with the random oracle won’t learn anything
either

• But because the Server is woken up each iteration of the
query loop, the Server does learn the number of queries

36

Proof of Security Against Server
• We are able to prove perfect security: Real/Ideal games

equally likely to return true:
lemma GReal_GIdeal :

 exists (Sim <: SIM{GReal, GIdeal}),

 forall (Adv <: ADV{GReal, GIdeal, Sim}) &m,

 Pr[GReal(Adv).main() @ &m : res] =

 Pr[GIdeal(Adv, Sim).main() @ &m : res].

• The only challenge is dealing with the redundant hashing
performed by the Client in the Real but not the Ideal Game

• We remove it using a variation of a technique due to Benjamin
Grégoire

37

Next: Ideal Games
and Proofs for

Third Party and Client

Ideal Game for Third Party

39

Adversary

SimulatorServer Client

Main

db

db res res

hdb

tag

count

qry

done

Server/Client hash elems in private random oracle

Ideal Game for Third Party
• The Adversary is invoked with the TP’s view when the database

and queries are requested by the game and client loop
• In the Ideal Game, Adversary only learns patterns, not anything

more about the database and queries
• It doesn’t have access to the private random oracle used by

Server/Client
• So even though the database and queries were used to

derive the hashed database [t1; …; tn] and query tags
s1, …, sm, these tags were all randomly (but consistently)
chosen, and so convey no information about the particular
elements

• And the Server’s random shuffling means it doesn’t learn
anything about the order of the database

40

Security Against Third Party
• E.g., suppose the original database was [0; 1; 1; 2]
• The Server’s shuffled database might be [1; 0; 2; 1]
• In the Real Game, TP will get a hashed database [t2, t1,
t3, t2], where t1 = hash(0, sec), t2 = hash(1,
sec) and t3 = hash(2, sec) — for the shared Server/
Client sec

• In the Ideal Game, TP will get a hashed database with the
same pattern, [s2; s1; s3; s2], but where the si have no
connection with hash or sec

• In order to tell the games apart, we can prove it has to guess
sec, i.e., call hash with a pair whose second component is
sec

41

Security Against Third Party
• To try to differentiate the games, the Adversary can pick a

database with a large number of distinct elements, where
each element appears a different number of times (e.g., [0;
1; 1; 2; 2; 2; …]).

• When given (in TP’s view) the hashed database that was
created in the Real or Ideal Game from shuffling the database
and then hashing its elements (either paired with sec in the
random oracle, or in the private random oracle), it can
(assuming no hash collisions) match the resulting tags t with
their elements e.

• Given a particular (e, t) pair, it can search for a sec’ such
that hashing (e, sec’) results in t. When it finds one, it
can check that the rest of the hashed database is consistent
with sec’. Otherwise it can try another choice of sec’.

42

Security Against Third Party
• This process is guaranteed to succeed in the Real Game, it’s

highly unlikely to succeed in the Ideal Game
• In any event, if the Adversary never calls the random oracle

with a pair whose second component is sec, we can prove it
will fail to distinguish the Real and Ideal Games

43

Proof of Security Against Third Party
• To obtain a security theorem, we must limit (limit) the

number of distinct inputs the Adversary may hash
• The Server and Client are unrestricted

• We use a cryptographic reduction to bridge the Real and
Ideal Games — one proved with up-to-bad reasoning, and so
— that makes us assume the Adversary’s procedures are
lossless (always terminating), and prove that the Client Loop
always terminates
• When we form GReal and GIdeal, we terminate the Client

Loop after qrys_max steps (in GReal, by returning None
from the environment’s get_qry procedure)

44

Proof of Security Against Third Party
• Here is the relevant part of the Environment for GReal:

 module Env : ENV = {
 var qrys_ctr : int

 ...

 proc get_qry() : elem option = {

 var qry_opt : elem option;

 qry_opt <@ A.get_qry(Protocol.tpv);

 if (qry_opt <> None) {

 if (qrys_ctr < qrys_max) { qrys_ctr <- qrys_ctr + 1; }

 else { qry_opt <- None; }

 }

 return qry_opt;

 }

 }

45

• We reduce security against TP to the security of a new
abstraction, “Secrecy Random Oracles”
• They offer limited (limit) hashing of element/secret pairs

(what Adversary does), as well as unlimited hashing of
elements (what Server and Client do)

• “Dependent” implementation with single map, where
hashing an element is same as hashing pair of it and sec
— connection with Real Game

• “Independent” implementation with separate maps —
connection with Ideal Game

• We prove that a Secrecy Adversary can only tell the games
involving the two implementations apart if it does limited
hashing of a pair whose second component is sec

Third Party Proof

46

• The Secrecy Random Oracles proof is carried out using up-
to-bad reasoning

• As long as the Secrecy Adversary doesn’t do limited hashing
with a pair with right side sec (the “bad” event), we can
maintain an invariant:
• keeping the non-sec-part of the map of the dependent

implementation in sync with the non-sec-part of the elem
* sec map of the independent implementation; and

• keeping the sec-part of the map of the dependent
implementation in sync with the elem map of the
independent implementation

Third Party Proof

47

• We reduce the upper-bounding of the probability of the bad
event holding to a lemma about another new abstraction,
“Secret Guessing Oracles”
• It gives the adversary limited (limit) number of chances

to guess sec
• EasyCrypt’s pHL is used to upper bound the probability of

the adversary winning by

limit / 2sec_len

• Both the Secrecy Random Oracles and Secret Guessing
Oracles definitions and proofs are packaged up into reusable
theories

Third Party Proof

48

• The theorem for security against the TP upper-bounds the
distance between the probabilities of the Real and Ideal
Games returning true by

limit / 2sec_len

Third Party Proof

49

Reminder: Real Game for Client

50

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

Environment
discards count
before calling

Adversary

Ideal Game for Client

51

Adversary

SIG Simulator

Main

db

db res res

qry

done

qry/count

done

SIG = Simulator’s
Interface to Game

generates secret,
does hashing

no shuffling or hashing
uses elems counts map

Proof of Security Against Client
• The Adversary can distinguish the Real and Ideal Games by

causing or forcing a hash collision
• If it can find distinct elem and elem’ such that (elem,
sec) and (elem’, sec) hash to the same hash tag, tag,
then it can let db = [elem] and the only query be elem’
• In Real Game, count will be

• 1
• In Ideal Game, count will be

• 0
• It can let db be a list of distinct elements of greater length

than number of distinct hash tags, and work through that
same list of elements as queries

52

Proof of Security Against Client
• Thus we must impose a hashing budget on the Adversary —

not just on the hashing it does directly, but also on the
hashing it makes Server and Client do:
• adv_budget — distinct hashing done by Adversary
• db_uniqs_max — maximum number of distinct elements

in database
• qrys_max — maximum number of queries

• budget = adv_budget + db_uniqs_max + qrys_max
• If Adversary doesn’t respect budget, we terminate game early

(we terminate the Client Loop after qrys_max steps)
• Because the proof uses up-to-bad reasoning, we need that

Adversary is always terminating and Client Loop terminates

53

Proof of Security Against Client
• We have Budgeted Random Oracles, which provide:

• separate budgeted hashing functions for the Adversary,
Server and Client
• set a flag when over budget, but keep working
• for Adversary and Server, only distinct inputs matter, but

for Client its the number of hashes
• ordinary (unrestricted) hashing (which the Adversary uses

before making its final judgement)
• There are two implementations of budgeted random oracles:

• a “collision-possible” one in which hash collisions may
occur

• a “collision-free-while-within-budget” one in which hash
collisions don’t happen if only budgeted hashing is done
and the individual budgets are respected

54

Proof of Security Against Client
• Each move back and forth between the collision-possible and

collision-free-while-within-budget versions incurs a penalty of
(budget * (budget - 1)) / 2tag_len + 1

• This is proved using up-to-bad reasoning, where the “bad”
event is when a collision occurs

• EasyCrypt’s failure event lemma and pHL are used to bound
the probability that failure occurs

• The proof is packaged into a reusable theory

55

Client Proof
• Move to collision-possible budgeted random oracle
• Move to collision-free-while-within-budget random oracle
• Use complex relational invariant to switch to Server, TP and

Client using an elements counts map instead of hashed
database (but Server still does hashing)

• Switch back to collision-possible budgeted random oracle
• Switch back to ordinary random oracle (Adversary still

subjected to budget)
• Get rid of Server’s hashing, which is now seen to be

redundant
• Show that computing elements counts map works out same

without first shuffling database
• Final refactoring

56

Client Proof
• Theorem for security against the Client upper bounds the

distance between the probabilities of the Real and Ideal
Games returning true by

(budget * (budget - 1)) / 2tag_len

 which is two times
(budget * (budget - 1)) / 2tag_len + 1

57

Summary/Lessons Learned
• Size of EasyCrypt formalization:

• About 380 lines of theorem statements and relevant
definitions (random oracles, protocol definition, etc.)

• About 5,275 lines of proof (which one can trust EasyCrypt
to check)

• Two-dimensional game structure very useful
• Formalizing Protocol once — parameterized by Environment

— and then specializing to Real Games works well
• Because we work information-theoretically, Simulators are

existentially quantified (so part of proof, not specification)
• Removing redundant hashing was crucial, and our version of

Grégoire’s technique was proved once and used twice

58

Summary/Lessons Learned
• Use of budgeted random oracles in Client proof let us do the

hard step of the proof without worrying about hash collisions
• EasyCrypt made it easy to obtain concrete upper bounds in

terms of game parameters on the distances between real and
ideal games

59

Discussion
• Q: In the PIR Protocol, does the Client always get correct

counts for its queries?
• A: Not in the highly unlikely event of hash collisions

• Q: Why do we let the Adversary choose the database and
queries?
• A: This models how it may have inside information about

what elements (e.g., people’s names) are likely to appear
in the database or in queries
• E.g., TP, when analyzing the tags it sees, might guess

that a tag appearing numerous times corresponds to
“Alice”, based on knowledge of an organization. But it
won’t be able to confirm that guess.

60

Discussion
• Q: Is it realistic to assume two parties can communicate,

without the other one eavesdropping?
• A: Yes. The Adversary works on behalf of a given party,

and has no special access to the network

61

Discussion
• Q: Are the restrictions we place on the Adversary realistic?

• A: Server:
• No restrictions

• A: TP:
• Limit on distinct hashes

• A: Client:
• Budget for Adversary’s distinct hashing
• Budget on number of distinct elements in database
• Budget on number of queries

62

in reality, the
Adversary

doesn’t choose
the database

or queries

Questions?

