
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Semantics of programs

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Expressions
We want to be able to write complex programs with our language.

Where f can be any arbitrary operator.

e::= x
 | f(e1,…,en)

Some expression examples

x+5 x mod k x[i] (x[i+1] mod 4)+5

Semantics of Expressions
This is defined on the structure of expressions:

{x}m = m(x)

{f(e1,…,en)}m = {f}({e1}m,…,{en}m)

where {f} is the semantics associated with the basic operation
we are considering.

Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command,
memories and memories or failure.

We will denote this relation as:

Exp * Mem → (Mem + ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset
as:

JcKm = m0{c}m=⊥Or

Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

Semantics of While

{while e do c}m = m

{e}m=falseIf Then

What about when {e}m=true ?

Semantics of While

{while e do c}m = {c;while e do c}m

{e}m=trueIf Then we would like to have:

Is this well defined?

Today: more on semantics
of While

n:=2;
r:=1;
while n ≥ 1 do
r := n ∗ r;
n := n-1;

What is the semantics of the following program:
Well defined?

{while e do c}m ={c;while e do c}m

Approximating While

whilen e do c

We could define the following syntactic approximations of
a While statement:

Approximating While

whilen e do c

We could define the following syntactic approximations of
a While statement:

This can be defined inductively on n as:

while0 e do c = skip

whilen+1 e do c =
if e then (c;whilen e do c) else skip

Semantics of While

{while e do c}m = {whilen e do c}m

We could go back and try to define the semantics using the
approximations:

Semantics of While

{while e do c}m = {whilen e do c}m

We could go back and try to define the semantics using the
approximations:

How do we find the n?

Information order
An idea that has been developed to solve this
problem is the idea of information order.

This corresponds to the idea of order different
possible denotations in term of the information they
provide.
In our case we can use the following order on
possible outputs:

⊥

m1 m2 m3 mn… …

≥
≥ ≥ ≥

Dana Scott

Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define
the semantics using the approximations and a sup operation:

Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define
the semantics using the approximations and a sup operation:

Will this work?

Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define
the semantics using the approximations and a sup operation:

Will this work?

We are missing the
base case.

Approximating While
Revisited

whilen e do c

We could define the following lower iteration of
a While statement:

This can be defined using the approximations as:

whilen e do c =
 whilen e do c;if e then abort else skip

{while e do c}m =supn∊Nat{whilen e do c}m

We now have all the components to define the semantics of while:

Semantics of While

Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip
where

and

Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip

where

and

n:=2;
r:=1;
while n ≥ 1 do
r := n ∗ r;
n := n-1;

What is the semantics of the following program:
Example

Fact(n: Nat) : Nat
 r:=1;
 while n > 1 do
 r := n ∗ r;
 n := n-1;

What is the semantics of the following program:
Example

Hoare Triples

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Some examples

x = z + 1 : {z > 0} ⇒ {x > 1}

Some examples

x = z + 1 : {z > 0} ⇒ {x > 1}
Is it valid?

Some examples

x = z + 1 : {z > 0} ⇒ {x > 0}

Some examples

x = z + 1 : {z > 0} ⇒ {x > 0}
Is it valid?

Some examples

x = z + 1 : {z < 0} ⇒ {x < 0}

Some examples

x = z + 1 : {z < 0} ⇒ {x < 0}

Is it valid?

Some examples

x = z + 1 : {z = n} ⇒ {x = n + 1}

Some examples

x = z + 1 : {z = n} ⇒ {x = n + 1}

Is it valid?

Some examples

: {y > x} ⇒ {z < 0}
while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {y > x} ⇒ {z < 0}
while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {even y ∧ odd x} ⇒ {z < 2.5}
 z=x*2+y
 x=x/2
 z=x*2-y

Some examples

: {even y ∧ odd x} ⇒ {z < 2.5}

Is it valid?

 z=x*2+y
 x=x/2
 z=x*2-y

How do we determine the
validity of an Hoare triple?

Validity of Hoare triple

c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple

c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

Validity of Hoare triple

c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

How shall we formalize
this intuition?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Hoare Logic

Floyd-Hoare reasoning

Robert W Floyd Tony Hoare

Rules of Hoare Logic
Skip

⊢skip: P⇒P

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
??

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Rules of Hoare Logic
Assignment

⊢x:=e: P⇒P[e/x]

Rules of Hoare Logic
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?

Rules of Hoare Logic
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

Rules of Hoare Logic
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P

How do we know that these
are the right rules?

Correctness of a rule

⊢c : P ⇒ Q

Correctness of a rule

⊢c : P ⇒ Q
⊢c’ : R ⇒ S

Correctness of a rule

⊢c : P ⇒ Q
⊢c’ : R ⇒ S

We say that a rule is correct if given a valid triple
as described by the assumption(s), we can
prove the validity of the triple in the conclusion.

