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Semantics of programs



Programming Language
c::= abort                   
   | skip                 
   | x:=e 
   | c;c 
   | if e then c else c  
   | while e do c 

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands



Expressions
We want to be able to write complex programs with our language. 

Where f can be any arbitrary operator.

e::= x       
   | f(e1,…,en)                

Some expression examples

x+5 x mod k x[i] (x[i+1] mod 4)+5



Semantics of Expressions
This is defined on the structure of expressions:

{x}m = m(x)

{f(e1,…,en)}m = {f}({e1}m,…,{en}m)

where {f} is the semantics associated with the basic operation 
we are considering.



Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command, 
memories and memories or failure.

We will denote this relation as:

Exp * Mem → (Mem + ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset 
as:

JcKm = m0{c}m=⊥Or



Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥

{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf



Semantics of While

{while e do c}m = m

{e}m=falseIf Then

What about when {e}m=true ?



Semantics of While

{while e do c}m = {c;while e do c}m

{e}m=trueIf Then we would like to have:

Is this well defined?



Today: more on semantics 
of While



n:=2; 
r:=1; 
while n ≥ 1 do 
r := n ∗ r;  
n := n-1; 

What is the semantics of the following program:
Well defined?

{while e do c}m ={c;while e do c}m



Approximating While

whilen e do c

We could define the following syntactic approximations of  
a While statement:



Approximating While

whilen e do c

We could define the following syntactic approximations of  
a While statement:

This can be defined inductively on n as:

while0 e do c = skip

whilen+1 e do c =  
if e then (c;whilen e do c) else skip 



Semantics of While

{while e do c}m = {whilen e do c}m

We could go back and try to define the semantics using the 
approximations:



Semantics of While

{while e do c}m = {whilen e do c}m

We could go back and try to define the semantics using the 
approximations:

How do we find the n?



Information order
An idea that has been developed to solve this 
problem is the idea of information order. 

This corresponds to the idea of order different 
possible denotations in term of the information they 
provide.  
In our case we can use the following order on 
possible outputs:

⊥

m1 m2 m3 mn… …

≥
≥ ≥ ≥

Dana Scott



Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define 
the semantics using the approximations and a sup operation:
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Semantics of While

{while e do c}m =supn∊Nat{whilen e do c}m

Using fixpoint theorems on lattices we can try now to define 
the semantics using the approximations and a sup operation:

Will this work?

We are missing the 
base case.



Approximating While 
Revisited

whilen e do c

We could define the following lower iteration of  
a While statement:

This can be defined using the approximations as:

whilen e do c =  
    whilen e do c;if e then abort else skip 



{while e do c}m =supn∊Nat{whilen e do c}m

We now have all the components to define the semantics of while:

Semantics of While



Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 
where

and



Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip 

where

and



n:=2; 
r:=1; 
while n ≥ 1 do 
r := n ∗ r;  
n := n-1; 

What is the semantics of the following program:
Example



Fact(n: Nat) : Nat 
  r:=1; 
  while n > 1 do 
    r := n ∗ r;  
    n := n-1; 

What is the semantics of the following program:
Example



Hoare Triples



Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Some examples

x = z + 1 : {z > 0} ⇒ {x > 1}



Some examples

x = z + 1 : {z > 0} ⇒ {x > 1}
Is it valid?



Some examples

x = z + 1 : {z > 0} ⇒ {x > 0}



Some examples

x = z + 1 : {z > 0} ⇒ {x > 0}
Is it valid?



Some examples

x = z + 1 : {z < 0} ⇒ {x < 0}



Some examples

x = z + 1 : {z < 0} ⇒ {x < 0}

Is it valid?



Some examples

x = z + 1 : {z = n} ⇒ {x = n + 1}



Some examples

x = z + 1 : {z = n} ⇒ {x = n + 1}

Is it valid?



Some examples

: {y > x} ⇒ {z < 0}
while x>0
   z=x*2+y
   x=x/2
   z=x*2-y



Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
   z=x*2+y
   x=x/2
   z=x*2-y



Some examples

: {y > x} ⇒ {z < 0}
while x>0
   z=x*2+y
   x=x/2
   z=x*2-y



Some examples

: {y > x} ⇒ {z < 0}

Is it valid?

while x>0
   z=x*2+y
   x=x/2
   z=x*2-y



Some examples

: {even y ∧ odd x} ⇒ {z < 2.5}
   z=x*2+y
   x=x/2
   z=x*2-y



Some examples

: {even y ∧ odd x} ⇒ {z < 2.5}

Is it valid?

   z=x*2+y
   x=x/2
   z=x*2-y



How do we determine the 
validity of an Hoare triple?



Validity of Hoare triple

c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Validity of Hoare triple

c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.



Validity of Hoare triple

c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.

How shall we formalize 
this intuition?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Is this condition easy to check?



Hoare Logic



Floyd-Hoare reasoning

Robert W Floyd Tony Hoare



Rules of Hoare Logic 
Skip

⊢skip: P⇒P



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
??



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q



Rules of Hoare Logic 
If then else
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Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q



Rules of Hoare Logic 
Assignment

⊢x:=e: P⇒P[e/x]



Rules of Hoare Logic 
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?



Rules of Hoare Logic 
Assignment

⊢x:=e : P[e/x]⇒P



Rules of Hoare Logic 
While

⊢while e do c : P ⇒ P ⋀ ¬e



Rules of Hoare Logic 
While

⊢while e do c : P ⇒ P ⋀ ¬e

⊢c : e ⋀ P ⇒ P



How do we know that these 
are the right rules?



Correctness of a rule

⊢c : P ⇒ Q



Correctness of a rule

⊢c : P ⇒ Q
⊢c’ : R ⇒ S



Correctness of a rule

⊢c : P ⇒ Q
⊢c’ : R ⇒ S

We say that a rule is correct if given a valid triple 
as described by the assumption(s), we can 
prove the validity of the triple in the conclusion.


