CS 591: Formal Methods in Security and Privacy Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Formal Semantics

We need to assign a formal meaning to the different components:

Semantics of Commands This is defined on the structure of commands:

$$\{abort\}_{m} = \bot$$

$$\{skip\}_{m} = m$$

$$\{x:=e\}_{m} = m[x \leftarrow \{e\}_{m}]$$

$$\{c;c'\}_{m} = \{c'\}_{m'} \quad If \quad \{c\}_{m} = m'$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \bot$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \bot$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \{c\}_{m} \quad If \quad \{e\}_{m} = true$$

$$\{if e then \ c_{t} \ else \ c_{f}\}_{m} = \{c_{f}\}_{m} \quad If \quad \{e\}_{m} = false$$

$$\{while \ e \ do \ c\}_{m} = sup_{n} \epsilon_{Nat} \{while_{n} \ e \ do \ c\}_{m}$$

$$where$$

$$while_{n} \ e \ do \ c = while^{n} \ e \ do \ c; if \ e \ then \ abort \ else \ skip$$

Semantics of Commands This is defined on the structure of commands:

$$\{abort\}_{m} = \bot$$

$$\{skip\}_{m} = m$$

$$\{x:=e\}_{m} = m[x \leftarrow \{e\}_{m}]$$

$$\{c;c'\}_{m} = \{c'\}_{m'} \quad If \quad \{c\}_{m} = m'$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \bot$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \bot$$

$$\{c;c'\}_{m} = \bot \quad If \quad \{c\}_{m} = \{c\}_{m} \quad If \quad \{e\}_{m} = true$$

$$\{if e then \ c_{t} \ else \ c_{f}\}_{m} = \{c_{f}\}_{m} \quad If \quad \{e\}_{m} = false$$

$$\{while \ e \ do \ c\}_{m} = sup_{n} \in Nat} \{while_{n} \ e \ do \ c\}_{m}$$

$$where$$

$$while_{n} \ e \ do \ c = while^{n} \ e \ do \ c; if \ e \ then \ abort \ else \ skip$$

$$and_{while^{0}} \ e \ do \ c = skip$$

whileⁿ⁺¹ e do c = if e then (c; whileⁿ e do c) else skip

Program Specifications (Hoare Triples)

Program

Postcondition (a logical formula)

Precondition

$$x := z + 1 : \{z = n\} \Rightarrow \{x = n + 1\}$$
Postcondition

Precondition

$$x := z + 1 : \{z = n\} \Rightarrow \{x = n + 1\}$$

Specification can also be imprecise.

Precondition

 $x := z + 1 : \{z > 0\} \Rightarrow \{x > 0\}$ Postcondition

Precondition

 $x := z + 1 : \{z > 0\} \Rightarrow \{x > 0\}$ Postcondition Is it a good specification?

Precondition

$x := z + 1 : \{z + 1 > 0\} \Rightarrow \{x > 0\}$

Postcondition

Precondition

$$x := z + 1 : \{z + 1 > 0\} \Rightarrow \{x > 0\}$$

Postcondition

Precondition

 $x := z + 1 : \{z < 0\} \Rightarrow \{x < 0\}$ Postcondition

Precondition

 $x := z + 1 : \{z < 0\} \Rightarrow \{x < 0\}$ Postcondition

Precondition

$$x := z + 1 : \{z < 0\} \Rightarrow \{x < 0\}$$
Postcondition
Is it a good

specification?

 $m_{in} = [z = -1, x = 2]$ $m_{out} = [z = -1, x = 0]$

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^k \}$$

Postcondition

Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^k \}$$

Postcondition

Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^k \}$$

Postcondition

- $m_{in} = [k = 0, n = 2, i = 0, r = 0]$
- $m_{out} = [k = 0, n = 2, i = 1, r = 2]$

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{ 0 < k \} \Rightarrow \{ r = n^k \}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{0 < k\} \Rightarrow \{r = n^k\}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{ 0 < k \} \Rightarrow \{ r = n^k \}$$

Postcondition

Is it a good specification?

$$m_{in} = [k = 1, n = 2, i = 0, r = 0]$$

 $m_{out} = [k = 1, n = 2, i = 2, r = 4]$

i:=0; r:=1; while(i<k)do r:=r * n; i:=i + 1 Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^k \}$$

Postcondition

Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^k \}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^i \}$$

Postcondition

Precondition

$$: \{ 0 \le k \} \Rightarrow \{ r = n^i \}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{0 < k \land k < 0\} \Rightarrow \{r = n^k\}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{0 < k \land k < 0\} \Rightarrow \{r = n^k\}$$

Postcondition

i:=0; r:=1; while(i≤k)do r:=r * n; i:=i + 1 Precondition

$$: \{0 < k \land k < 0\} \Rightarrow \{r = n^k\}$$

Postcondition

Is it a good specification?

This is good because there is no memory that satisfies the precondition.

How do we determine the validity of an Hoare triple?

Validity of Hoare triple

Precondition (a logical formula)

 $c: P \Rightarrow$

We are interested only in inputs that meets P and we want to have outputs satisfying Q.

Program

Postcondition (a logical formula)

Validity of Hoare triple

We are interested only in inputs that meets P and we want to have outputs satisfying Q.

 $c: P \Rightarrow$

Precondition

(a logical formula)

How shall we formalize this intuition?

Program

Postcondition (a logical formula)

Validity of Hoare triple We say that the triple c: P⇒Q is valid if and only if for every memory m such that P(m)and memory m' such that $\{c\}_m = m'$ we have Q(m').

Validity of Hoare triple We say that the triple c: P⇒Q is valid if and only if for every memory m such that P(m) and memory m' such that $\{c\}_m = m'$ we have Q(m').

Is this condition easy to check?
Hoare Logic

Floyd-Hoare reasoning

Robert W Floyd

Tony Hoare

A verification of an interpretation of a flowchart is a proof that for every command c of the flowchart, if control should enter the command by an entrance a_i with P_i true, then control must leave the command, if at all, by an exit b_j with Q_j true. A semantic definition of a particular set of command types, then, is a rule for constructing, for any command c of one of these types, a verification condition $V_c(\mathbf{P}; \mathbf{Q})$ on the antecedents and consequents of c. This verification condition must be so constructed that a proof that the verification condition is satisfied for the antecedents and consequents of each command in a flowchart is a verification of the interpreted flowchart.

Rules of Hoare Logic: Skip

⊢skip: P⇒P

Rules of Hoare Logic: Skip

⊢skip: P⇒P

Is this correct?

Correctness of an axiom

$$\vdash_{C}$$
 : $P \Rightarrow Q$

We say that an axiom is correct if we can prove the validity of each triple which is an instance of the conclusion.

Correctness of Skip Rule ⊢skip: P⇒P

To show this rule correct we need to show the validity of the triple $skip: P \Rightarrow P$.

Correctness of Skip Rule ⊢skip: P⇒P

To show this rule correct we need to show the validity of the triple skip: $P \Rightarrow P$.

For every m such that P(m) and m' such that $\{skip\}_m = m' \text{ we need } P(m').$

Correctness of Skip Rule ⊢skip: P⇒P

To show this rule correct we need to show the validity of the triple skip: $P \Rightarrow P$.

For every m such that P(m) and m' such that $\{skip\}_m = m'$ we need P(m').

Follow easily by our semantics: {skip}m=m

Rules of Hoare Logic: Assignment

$\vdash x := e : P \Rightarrow P[e/x]$

Rules of Hoare Logic: Assignment

$\vdash x := e : P \Rightarrow P[e/x]$

Is this correct?

$x := x + 1 : \{x < 0\} \Rightarrow \{x + 1 < 0\}$

$x := x + 1 : \{x < 0\} \Rightarrow \{x + 1 < 0\}$

$x := z + 1 : \{x > 0\} \Rightarrow \{z + 1 > 0\}$

$x := z + 1 : \{x > 0\} \Rightarrow \{z + 1 > 0\}$

Rules of Hoare Logic: Assignment

$\vdash x := e : P[e/x] \Rightarrow P$

Rules of Hoare Logic: Assignment

Is this correct?

$x := z + 1 : \{z + 1 > 0\} \Rightarrow \{x > 0\}$

$x := z + 1 : \{z + 1 > 0\} \Rightarrow \{x > 0\}$

$x := x + 1 : \{x + 1 < 0\} \Rightarrow \{x < 0\}$

$x := x + 1 : \{x + 1 < 0\} \Rightarrow \{x < 0\}$

Correctness Assignment Rule

$\vdash x := e : P[e/x] \Rightarrow P$

To show this rule correct we need to show the validity $x := e : P[e/x] \Rightarrow P$ for every x, e, P.

Correctness Assignment Rule

$\vdash x := e : P[e/x] \Rightarrow P$

To show this rule correct we need to show the validity $x := e : P[e/x] \Rightarrow P$ for every x, e, P.

For every m such that P[e/x](m) and m' such that $\{x := e\}_m = m'$ we need P(m').

Correctness Assignment Rule

$\vdash x := e : P[e/x] \Rightarrow P$

To show this rule correct we need to show the validity $x := e : P[e/x] \Rightarrow P$ for every x, e, P.

For every m such that P[e/x](m) and m' such that $\{x := e\}_m = m'$ we need P(m').

By our semantics: $\{x := e\}_m = m [x = \{e\}_m]$ and we can show $P[e/x](m) = P(m[x = \{e\}_m])$

Rules of Hoare Logic Composition

$\vdash C; C': P \Rightarrow Q$

Rules of Hoare Logic Composition

⊢c:P⇒R

 $\vdash C; C': P \Rightarrow Q$

Rules of Hoare Logic
Composition $\vdash c: P \Rightarrow R$ $\vdash c': R \Rightarrow Q$

 $\vdash C; C': P \Rightarrow Q$

Rules of Hoare Logic
Composition $\vdash c: P \Rightarrow R$ $\vdash c': R \Rightarrow O$

Is this correct?

 $Final x := z * 2; z := x * 2 \\ : \{(z * 2) * 2 = 8\} \Rightarrow \{z = 8\}$

Some Instances
$$\vdash x := z * 2; z := x * 2$$
 $: \{(z * 2) * 2 = 8\} \Rightarrow \{z = 8\}$ Is this a valid triple?

How can we prove it?

 $\vdash x := z * 2; z := x * 2 : \{(z * 2) * 2 = 8\} \Rightarrow \{z = 8\}$

How can we prove it?

$$\vdash x := z * 2 : \{(z * 2) * 2 = 8\} \Rightarrow \{x * 2 = 8\}$$

$$\vdash z := x * 2 : \{x * 2 = 8\} \Rightarrow \{z = 8\}$$

$$\vdash x := z * 2; z := x * 2 : \{(z * 2) * 2 = 8\} \Rightarrow \{z = 8\}$$

To show this rule correct we need to show the validity $c;c': P \Rightarrow Q$ for every c,c', P,Q.

To show this rule correct we need to show the validity $c; c': P \Rightarrow Q$ for every c, c', P, Q.

For every m such that P(m) and m' such that $\{c, c'\}_m = m'$ we need Q(m').

Correctness Composition Rule $\vdash c: P \Rightarrow R$ $\vdash c': R \Rightarrow Q$ $\vdash c; c': P \Rightarrow Q$

By our semantics: { c; c' } m=m' if and only if there is m'' such that { c } m=m'' and { c' } m''=m'.

By our semantics: { c; c' } m=m' if and only if there is m'' such that { c } m=m'' and { c' } m''=m'.

Assuming $c: P \Rightarrow R$ and $c': R \Rightarrow Q$ valid, if P (m) we can show R (m'') and if R (m'') we can show Q(m'), hence since we have P (m) we can conclude Q(m').
$\begin{array}{c} Correctness Composition Rule \\ \vdash c: P \Rightarrow R \qquad \vdash c': R \Rightarrow Q \\ \vdash c; c': P \Rightarrow Q \end{array}$

By our semantics: { c; c' } m=m' if and only if there is m'' such that { c } m=m'' and { c' } m''=m'.

Assuming $c: P \Rightarrow R$ and $c': R \Rightarrow Q$ valid, if P (m) we can show R (m'') and if R (m'') we can show Q(m'), hence since we have P (m) we can conclude Q(m').

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Is this a valid triple?

Can we prove it with the rules that we have?

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Is this a valid triple?

Can we prove it with the rules that we have?

X

Some Instances

What is the issue?

 $\vdash x := z * 2; z := x * 2 : \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Some Instances

What is the issue?

$$\vdash x := z * 2 : \{z * 4 = 8\} \Rightarrow \{x * 2 = 8\}$$

$$\vdash z := x * 2 : \{x * 2 = 8\} \Rightarrow \{z = 8\}$$

$$\vdash x := z * 2; z := x * 2 : \{z * 4 = 8\} \Rightarrow \{z = 8\}$$

What is the issue?

 $\vdash x := z * 2 : \{z * 4 = 8\} \Rightarrow \{x * 2 = 8\}$ $\vdash z := x * 2 : \{x * 2 = 8\} \Rightarrow \{z = 8\}$ $\vdash x := z * 2; z := x * 2 : \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Rules of Hoare Logic Consequence

$$P \Rightarrow S \qquad \vdash C : S \Rightarrow R \qquad R \Rightarrow Q$$

$$\vdash_{\mathbf{C}} : P \Rightarrow Q$$

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Is this a valid triple?

Can we prove it with the rules that we have?

$\vdash x := z * 2; z := x * 2$ $: \{z * 4 = 8\} \Rightarrow \{z = 8\}$

Is this a valid triple?

Can we prove it with the rules that we have?

Some Instances

$$\vdash x := z * 2 \{ (z * 2) * 2 = 8 \} \Rightarrow \{ x * 2 = 8 \}$$

 $\{z * 4 = 8\} \Rightarrow \{(z * 2) * 2 = 8\}$

$$\vdash x := z * 2: \{z * 4 = 8\} \Rightarrow \{x * 2 = 8\} \quad \vdash z := x * 2: \{x * 2 = 8\} \Rightarrow \{z = 8\}$$

 $\vdash x := z * 2; z := x * 2; \{z * 4 = 8\} \Rightarrow \{z = 8\}$

$\vdash if e then c_1 else c_2 : P \Rightarrow Q$

 $\vdash c_2 : P \Rightarrow Q$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

Is this correct?

⊢ if y = 0 then skip else x := x + 1; x := x - 1: {x = 1} ⇒ {x = 1}

⊢ if y = 0 then skip else x := x + 1; x := x - 1: {x = 1} ⇒ {x = 1}

⊢ if y = 0 then skip else x := x + 1; x := x - 1: {x = 1} ⇒ {x = 1}

Is this a valid triple?

Can we prove it with the rules that we have?

⊢ if y = 0 then skip else x := x + 1; x := x - 1: {x = 1} ⇒ {x = 1}

Is this a valid triple?

Can we prove it with the rules that we have?

Some Instances

•

⊢ if y = 0 then skip else x := x + 1; x := x - 1: {x = 1} ⇒ {x = 1}

 $\vdash c_1 : P \Rightarrow Q$

 $\vdash c_2 : P \Rightarrow Q$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

⊢c₁:P⇒Q

 $\vdash c_2 : P \Rightarrow Q$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

Is this strong enough?

⊢ if false then skip else x = x + 1: {x = 0} ⇒ {x = 1}

⊢ if false then skip else x = x + 1: {x = 0} ⇒ {x = 1}

⊢ if false then skip else x = x + 1: {x = 0} ⇒ {x = 1}

Is this a valid triple?

Can we prove it with the rules that we have?

⊢ if false then skip else x = x + 1: {x = 0} ⇒ {x = 1}

Is this a valid triple?

Can we prove it with the rules that we have?

X

$$\vdash c_1:e \land P \Rightarrow Q \qquad \vdash c_2:\neg e \land P \Rightarrow Q$$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

Is this correct?

$$\vdash c_1:e \land P \Rightarrow Q \qquad \vdash c_2:\neg e \land P \Rightarrow Q$$

 $\vdash if e then c_1 else c_2 : P \Rightarrow Q$

Rules of Hoare Logic: Abort

\vdash Abort: $? \Rightarrow ?$

Rules of Hoare Logic: Abort

\vdash Abort: $? \Rightarrow ?$

What can be a good specification?

Validity of Hoare triple We say that the triple c: P⇒Q is valid if and only if for every memory m such that P(m)and memory m' such that $\{c\}_m = m'$ we have Q(m').

Rules of Hoare Logic: Abort

⊢Abort:P⇒Q

Is this correct?

Rules of Hoare Logic: Abort

⊢Abort:P⇒Q

Is this correct?

Homework
