
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Hoare Logic

LfA

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditionsWe also need to describe the rules
which combine program and

specifications.

Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip
where

and

Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip

where

and

Program Specifications
(Hoare Triples)

Specifications - Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good
specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good
specification?

Precondition

Postcondition

✓

Specification can also be
imprecise.

Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good
specification?

Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good
specification? ✓

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good
specification?

Precondition

Postcondition

✓

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

✗

Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good

specification?

Precondition

Postcondition

✗
min = [z = − 1,x = 2] mout = [z = − 1,x = 0]

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✗
min = [k = 0,n = 2,i = 0,r = 0]
mout = [k = 0,n = 2,i = 1,r = 2]

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗

Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good
specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓

Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good

specification?

Precondition

Postcondition

✓
This is good because there is no

memory that satisfies the precondition.

How do we determine the
validity of an Hoare triple?

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

Validity of Hoare triple

c : P ⇒ Q
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

We are interested only
in inputs that meets P
and we want to have
outputs satisfying Q.

How shall we formalize
this intuition?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Is this condition easy to check?

Hoare Logic

Floyd-Hoare reasoning

Robert W Floyd Tony Hoare

Rules of Hoare Logic:
Skip

⊢skip: P⇒P

Rules of Hoare Logic:
Skip

⊢skip: P⇒P
Is this correct?

Correctness of an axiom

⊢c : P ⇒ Q

We say that an axiom is correct if we can prove
the validity of each triple which is an instance of
the conclusion.

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that
{skip}m=m’ we need P(m’).

Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that
{skip}m=m’ we need P(m’).

Follow easily by our semantics:
{skip}m=m

Rules of Hoare Logic:
Assignment

⊢x:=e: P⇒P[e/x]

Rules of Hoare Logic:
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?

Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple?

Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple? ✗

Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple?

Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple? ✗

Rules of Hoare Logic:
Assignment

⊢x:=e : P[e/x]⇒P

Rules of Hoare Logic:
Assignment

⊢x:=e : P[e/x]⇒P
Is this correct?

Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple?

Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple? ✓

x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

✓

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

For every m such that P[e/x](m) and m’ such
that {x:=e}m=m’ we need P(m’).

Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the
validity x:=e:P[e/x]⇒P for every x,e,P.

For every m such that P[e/x](m) and m’ such
that {x:=e}m=m’ we need P(m’).

By our semantics: {x:=e}m=m[x={e}m] and
we can show P[e/x](m)= P(m[x={e}m])

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Rules of Hoare Logic
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Is this correct?

Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple?

Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple? ✓

Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

⊢ x := z * 2 : {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

Correctness Composition Rule

To show this rule correct we need to show the
validity c;c’:P⇒Q for every c,c’,P,Q.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

To show this rule correct we need to show the
validity c;c’:P⇒Q for every c,c’,P,Q.

For every m such that P(m) and m’ such that
{c,c’}m=m’ we need Q(m’).

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we
can show R(m’’) and if R(m’’) we can show
Q(m’), hence since we have P(m)we can

conclude Q(m’).

Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if
there is m’’ such that

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we
can show R(m’’) and if R(m’’) we can show
Q(m’), hence since we have P(m)we can

conclude Q(m’). ✓

Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✗

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

✗

Rules of Hoare Logic
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

Some examples

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

✓

Some Instances

⊢ x := z * 2; z := x * 2: {z * 4 = 8} ⇒ {z = 8}

⊢ x := z * 2: {z * 4 = 8} ⇒ {x * 2 = 8} ⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

: {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}⊢ x := z * 2

{z * 4 = 8} ⇒ {(z * 2) * 2 = 8}

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple?

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✓

Some Instances

⊢ 𝚜𝚔𝚒𝚙 ⊢ x := x + 1; x := x − 1

⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

: {x = 1} ⇒ {x = 1} : {x = 1} ⇒ {x = 1}

⋮

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this strong enough?

⊢c2:P⇒Q

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple?

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have?

Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the

rules that we have? ✗

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Rules of Hoare Logic
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Homework

Rules of Hoare Logic:
Abort

⊢Abort: ?⇒?

Rules of Hoare Logic:
Abort

⊢Abort: ?⇒?
What can be a good

specification?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q
Is this correct?

Rules of Hoare Logic:
Abort

⊢Abort:P⇒Q
Is this correct?

Homework

