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Formal Semantics

Precondition
Program 

Postcondition

formal semantics 
of programs

We need to assign a formal meaning to the different 
components: formal semantics 

of specification 
conditions

formal semantics 
of specification 

conditionsWe also need to describe the rules 
which combine program and 

specifications.



Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 
where

and



Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip 

where

and



Program Specifications 
(Hoare Triples)



Specifications - Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good 
specification?

Precondition

Postcondition



Some examples

x := z + 1 : {z = n} ⇒ {x = n + 1}

Is it a good 
specification?

Precondition

Postcondition

✓



Specification can also be 
imprecise. 



Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good 
specification?



Some examples

x := z + 1 : {z > 0} ⇒ {x > 0}
Precondition

Postcondition

Is it a good 
specification? ✓



Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good 
specification?

Precondition

Postcondition



Some examples

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good 

specification?

Precondition

Postcondition



Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good 

specification?

Precondition

Postcondition

✗



Some examples

x := z + 1 : {z < 0} ⇒ {x < 0}
Is it a good 

specification?

Precondition

Postcondition

✗
min = [z = − 1,x = 2] mout = [z = − 1,x = 0]



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✗



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✗
min = [k = 0,n = 2,i = 0,r = 0]
mout = [k = 0,n = 2,i = 1,r = 2]



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✗



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = nk}i:=0;

r:=1;
while(i<k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition



Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✓



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✓



Some examples

: {0 < k ∧ k < 0} ⇒ {r = nk}
i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✓
This is good because there is no 

memory that satisfies the precondition. 



How do we determine the 
validity of an Hoare triple?



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.



Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.

How shall we formalize 
this intuition?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Is this condition easy to check?



Hoare Logic



Floyd-Hoare reasoning

Robert W Floyd Tony Hoare



Rules of Hoare Logic: 
Skip

⊢skip: P⇒P



Rules of Hoare Logic: 
Skip

⊢skip: P⇒P
Is this correct?



Correctness of an axiom

⊢c : P ⇒ Q

We say that an  axiom is correct if we can prove 
the validity of each triple which is an instance of  
the conclusion.



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that 
{skip}m=m’ we need P(m’).



Correctness of Skip Rule
⊢skip: P⇒P

To show this rule correct we need to show the 
validity of the triple skip: P⇒P.

For every m such that P(m) and m’ such that 
{skip}m=m’ we need P(m’).

Follow easily by our semantics: 
{skip}m=m  



Rules of Hoare Logic: 
Assignment

⊢x:=e: P⇒P[e/x]



Rules of Hoare Logic: 
Assignment

⊢x:=e: P⇒P[e/x]
Is this correct?



Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple?



Some instances

x := x + 1 : {x < 0} ⇒ {x + 1 < 0}

Is this a valid triple? ✗



Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple?



Some instances

x := z + 1 : {x > 0} ⇒ {z + 1 > 0}

Is this a valid triple? ✗



Rules of Hoare Logic: 
Assignment

⊢x:=e : P[e/x]⇒P



Rules of Hoare Logic: 
Assignment

⊢x:=e : P[e/x]⇒P
Is this correct?



Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple?



Some instances

x := z + 1 : {z + 1 > 0} ⇒ {x > 0}

Is this a valid triple? ✓



x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances



x := x + 1 : {x + 1 < 0} ⇒ {x < 0}

Is this a valid triple?

Some instances

✓



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 

For every m such that P[e/x](m) and m’ such 
that {x:=e}m=m’ we need P(m’).



Correctness Assignment Rule
⊢x:=e : P[e/x]⇒P

To show this rule correct we need to show the 
validity x:=e:P[e/x]⇒P for every x,e,P. 

For every m such that P[e/x](m) and m’ such 
that {x:=e}m=m’ we need P(m’).

By our semantics: {x:=e}m=m[x={e}m]  and 
we can show P[e/x](m)= P(m[x={e}m]) 



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Rules of Hoare Logic 
Composition

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Is this correct?



Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple?



Some Instances
⊢ x := z * 2; z := x * 2

: {(z * 2) * 2 = 8} ⇒ {z = 8}
Is this a valid triple? ✓



Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?



Some Instances

⊢ x := z * 2; z := x * 2 : {(z * 2) * 2 = 8} ⇒ {z = 8}

How can we prove it?

⊢ x := z * 2 : {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}



Correctness Composition Rule

To show this rule correct we need to show the 
validity c;c’:P⇒Q for every c,c’,P,Q. 

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

To show this rule correct we need to show the 
validity c;c’:P⇒Q for every c,c’,P,Q. 

For every m such that P(m) and m’ such that 
{c,c’}m=m’ we need Q(m’).

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we 
can show R(m’’) and if R(m’’) we can show 
Q(m’), hence since we have P(m)we can 

conclude Q(m’).



Correctness Composition Rule

By our semantics: {c;c’}m=m’ if and only if 
there is m’’ such that   

{c}m=m’’and {c’}m’’=m’.

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

Assuming c:P⇒R and c’:R⇒Q valid, if P(m) we 
can show R(m’’) and if R(m’’) we can show 
Q(m’), hence since we have P(m)we can 

conclude Q(m’). ✓



Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✗

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}



Some Instances

⊢ x := z * 2; z := x * 2 : {z * 4 = 8} ⇒ {z = 8}

What is the issue?

⊢ x := z * 2 : {z * 4 = 8} ⇒ {x * 2 = 8}

⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

✗



Rules of Hoare Logic 
Consequence

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q



Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}



Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

✓



Some Instances

⊢ x := z * 2; z := x * 2: {z * 4 = 8} ⇒ {z = 8}

⊢ x := z * 2: {z * 4 = 8} ⇒ {x * 2 = 8} ⊢ z := x * 2: {x * 2 = 8} ⇒ {z = 8}

: {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}⊢ x := z * 2

{z * 4 = 8} ⇒ {(z * 2) * 2 = 8}



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this correct?

⊢c2:P⇒Q



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple?



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?



Some examples
⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✓



Some Instances

⊢ 𝚜𝚔𝚒𝚙 ⊢ x := x + 1; x := x − 1

⊢ 𝚒𝚏 𝚢 = 𝟶 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x := x + 1; x := x − 1

: {x = 1} ⇒ {x = 1}

: {x = 1} ⇒ {x = 1} : {x = 1} ⇒ {x = 1}

⋮



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q ⊢c2:P⇒Q



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q

⊢c1:P⇒Q

Is this strong enough?

⊢c2:P⇒Q



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple?



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?



Some examples

⊢ 𝚒𝚏 𝚏𝚊𝚕𝚜𝚎 𝚝𝚑𝚎𝚗 𝚜𝚔𝚒𝚙 𝚎𝚕𝚜𝚎 x = x + 1
: {x = 0} ⇒ {x = 1}

Is this a valid triple? ✓
Can we prove it with the 

rules that we have? ✗



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?



Rules of Hoare Logic 
If then else

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

Is this correct?

Homework



Rules of Hoare Logic: 
Abort

⊢Abort: ?⇒?



Rules of Hoare Logic: 
Abort

⊢Abort: ?⇒?
What can be a good 

specification?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q
Is this correct?



Rules of Hoare Logic: 
Abort

⊢Abort:P⇒Q
Is this correct?

Homework






