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From the previous classes



NonInterference
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Some Rules of Relational Hoare Logic
⊢skip~skip:P⇒P
⊢abort~abort:true⇒false
⊢x1:=e1~x2:=e2:  
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P
⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S
P⇒S R⇒Q

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Some Rules of Relational Hoare Logic

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>



One-sided Rules

if e then c1 else c1’            ~ 
          c2

⊢c1~c2:e<1> ⋀ P ⇒ Q ⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

          c1           ~ 
if e then c2 else c2’          

⊢c1~c2:e<2>⋀ P ⇒ Q ⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ =low

How can we prove this?



Today: more on RHL and 
probabilistic computations



What do we do if our two programs 
have different forms? There are 
three pairs of one-sided rules.



Assignment — left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Assignment — right

⊢skip ~ x:=e:  
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll 
ignore for now



Rules of Relational Hoare Logic 
Program Equivalence Rule

⊨P:c1≡c2 means {c1}m = {c2}m 
for all m such that P(m)

⊨P:c1’≡c1

⊢c1~c2: P ⇒ Q
⊢c1’~c2’: P ⇒ Q⊨P:c2’≡c2



Rules of Relational Hoare Logic 
Program Equivalences

⊨P : skip;c ≡ c 

⊨P : c;skip ≡ c 

⊨P:(c1;c2);c3 ≡ c1;(c2;c3) 

…



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2;c3 ~ c1’;c2’;c3’: P ⇒ Q

⊢c1;c2 ~ c1’: P ⇒ R
⊢c3 ~ c2’;c3’: R ⇒ Q

We can combine the Composition and 
Program Equivalence Rules to split 
commands where we like:



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ skip: P ⇒ R
⊢c2 ~ c1’: R ⇒ Q

⊢c1;c2 ~ skip;c1’: P ⇒ Q



Rules of Relational Hoare Logic 
Combining Composition and Equivalence

⊢c1;c2 ~ c1’: P ⇒ Q

⊢c1 ~ c1’: P ⇒ R
⊢c2 ~ skip: R ⇒ Q

⊢c1;c2 ~ c1’;skip: P ⇒ Q



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

How do we check this?



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Possible projects
• Look at how to guarantee trace-based 

noninterference. 
• Look at how to guarantee side-channel free 

noninterference. 
• Look at the relations between self-composition and 

relational logic.

In Easycrypt

Not related to Easycrypt
• Look at type systems for non-interference. 
• Look at other methods for relational reasoning 
• Look at declassification



Probabilistic Language



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… probabilistic expressions



Probabilistic Expressions
We extend the language with expression describing probability 
distributions. 

Where f is a distribution declaration

d::= f(e1,…,en,d1,…,dk)                

Some expression examples

uniform({0,1}n) gaussian(k,σ) laplace(k,b)



Semantics of Probabilistic 
Expressions

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

but is the result just a value?



Probabilistic Subdistributions
A discrete subdistribution over a set A is a function  
µ : A → [0, 1]  
such that the mass of µ, 

  

verifies |µ| ≤ 1.  

The support of a discrete subdistribution µ, 
supp(µ) = {a ∈ A | µ(a) > 0}  
is necessarily countable, i.e. finite or countably infinite.  

We will denote the set of sub-distributions over A by D(A), 
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).  

|μ | = ∑
a∈A

μ(a)



Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution. 

We define the probability of an event E⊆A with respect to 
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)



Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following 
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.



Operations over  
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the 
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)



Operations over  
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function  
M:A → D(B) then we can define their composition by means 
of an expression  let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]



Semantics of Probabilistic 
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over 
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)



Semantics of PWhile 
Commands

What is the meaning of the following command?

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of PWhile 
Commands

What is the meaning of the following command?

We can give the semantics as a function between command, 
memories and subdistributions over memories.

We will denote this relation as:

Cmd * Mem → D(Mem)

{c}m=µ

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of Commands
This is defined on the structure of commands:



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])



Semantics of While
What about while

How did we handle the deterministic case?



Semantics of While
What about while

{while e do c}m = ???

How did we handle the deterministic case?



Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’

Where



Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Is this well defined?



Semantics of Commands
This is defined on the structure of commands:

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf
{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 

How do we formalize this?



Probabilistic Noninterference

A program prog is probabilistically 
noninterferent if and only if, whenever 
we run it on two low equivalent 
memories m1 and m2 we have that the 
probabilistic distributions we get as 
outputs are the same on public outputs. 



Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

How can we prove that this is noninterferent?


