Assignment 5

Due by Friday, March 19, at 5pm
Submission Via Gradescope

Fill in the two gaps in the following EASYCRYPT file, Assignment5.ec, which is available on the course website. Make sure EASYCRYPT is able to check your proofs.

(* ASSIGNMENT 5

Due on Gradescope by 5pm on Friday, March 19 *)

prover quorum=2 ["Alt-Ergo" "Z3"].

timeout 2. (* smt timeout in seconds - can increase *)

require import AllCore Distr.

(* a type mybool with elements tt standing for "true" and ff standing for "false", and an exclusive or operator ^^: *)

type mybool = [tt | ff].

(* because tt is an alias for the value () : unit, you'll sometimes see Top.tt in goals for the value tt of mybool *)

op (^^) : mybool -> mybool -> mybool.

(* we can write x ^^ y instead of (^^) x y

^^ is left associative, so x ^^ y ^^ z means (x ^^ y) ^^ z *)

(* axioms defining exclusive or (nosmt means these axioms aren't available to the SMT provers): *)

axiom nosmt xor_tt_tt : tt ^^ tt = ff.
axiom nosmt xor_tt_ff : tt ^^ ff = tt.
axiom nosmt xor_ff_tt : ff ^^ tt = tt.
axiom nosmt xor_ff_ff : ff ^^ ff = ff.

(* lemmas for exclusive or: *)
(* false on the right *)
lemma xor_ff (x : mybool) : x ^^ ff = x.
proof.
case x; [apply xor_tt_ff | apply xor_ff_ff].
qed.

(* cancelling *)
lemma xorK (x : mybool) : x ^^ x = ff.
proof.
case x; [apply xor_tt_tt | apply xor_ff_ff].
qed.

(* commutativity *)
lemma xorC (x y : mybool) : x ^^ y = y ^^ x.
case x.
case y => //.
by rewrite xor_tt_ff xor_ff_tt.
case y => //.
by rewrite xor_ff_tt xor_tt_ff.
qed.

(* associativity *)
lemma xorA (x y z : mybool) : (x ^^ y) ^^ z = x ^^ (y ^^ z).
proof.
case x.
case y.
rewrite xor_tt_tt.
case z.
by rewrite xor_ff_tt xor_tt_tt xor_tt_ff.
by rewrite xor_ff_ff xor_tt_ff xor_tt_tt.
case z.
by rewrite xor_tt_tt xor_tt_tt xor_ff_tt xor_tt_tt.
by rewrite xor_tt_tt xor_tt TT xor_ff_ff xor_tt_tt.
case y.
rewrite xor_ff_tt.
case z.
by rewrite xor_tt_tt xor_ff_ff.
by rewrite xor_tt_tt xor_ff_tt.
case z.
by rewrite xor_ff_ff xor_ff_tt xor_ff_tt.
by rewrite xor_ff_ff xor_ff_ff.
qed.
(* a sub-distribution dmybool on mybool - this means that the sum of
the values of tt and ff in dmybool may be less than 1 *)

op dmybool : mybool distr.

(* dmybool is a distribution, i.e., the sum of the values of tt and ff
in dmybool is $1\%r$ *)

axiom dmybool_ll : is_lossless dmybool.

(* if d is a sub-distribution on type 'a, and E is an event
(predicate) on 'a (E : 'a -> bool), then $\mu_d E$ is the probability
that choosing a value from d will satisfy E

if d is a sub-distribution on type 'a, and x : 'a, then $\mu_1 d x$ is
the probability that choosing a value from d will result in x, i.e.,
is the value of x in d

μ_1 is defined by: $\mu_1 d x = \mu d (\text{pred1} x)$, where pred1 x is the
predicate that returns true iff its argument is x *)

(* both tt and ff have value one-half in dmybool: *)

axiom dmybool1E (b : mybool) :
 $\mu_1 dmybool b = 1\%r / 2\%r$.

(* then we can prove that dmybool is full, i.e., that its support is
all of mybool, i.e., that both tt and ff have non-zero values in
dmybool: *)

lemma dmybool_fu : is_full dmybool.
proof.
 rewrite /is_full => x.
 rewrite /support dmybool1E StdOrder.RealOrder.divr_gt0 //.
 qed.

(* QUESTION 1 (40 Points) *)

module M1 = {
 var x, y : mybool (* private *)
 var z : mybool (* public *)

 proc f() : unit = {
 var b : mybool;
lemma lem1 :
 equiv[M1.f ~ M1.f : ={M1.z} ==> ={M1.z}].
proof.
 (* BEGIN FILL IN *)
 (* END FILL IN *)
qed.

(* QUESTION 2 (60 Points) *)

module M2 = {
 var x, y : mybool (* private *)
 var z : mybool (* public *)

 proc f() : unit = {
 var u, v : mybool;
 if (x = y) {
 u <$ dmybool;
 z <- u ^^ x;
 }
 else {
 u <$ dmybool;
 v <$ dmybool;
 z <- u ^^ v ^^ x ^^ y;
 }
 }
}.

lemma lem2 :
 equiv[M2.f ~ M2.f : ={M2.z} ==> ={M2.z}].
proof.
 (* BEGIN FILL IN *)
 (* END FILL IN *)
qed.