
Marco Gaboardi
Room: 338-B  

gaboardi@buffalo.edu 
http://www.buffalo.edu/~gaboardi

CSE660  
Differential Privacy

October 4, 2017  

1

(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is
(ε,δ)-differentially private iff
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

3
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

…
Mn is εn-DP

The overall process is (ε1+ε2+…+εn)-DP

4

Question: how much perturbation do we have if we want
to answer n counting queries with Laplace under ε-DP?

Multiple queries

5

Laplace accuracy: with high probability we have:
���q(D)� r

��� O
⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏
global

n

Multiple queries
Question: how much perturbation do we have if we want
to answer n counting queries with Laplace under ε-DP?

6

By putting them together (hiding some details) we have as a
max error

O
⇣ n

✏
global

n

⌘
= O

⇣ 1

✏
global

⌘

Notice that if we don’t renormalize this is of the order of
O
⇣ n

✏
global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.

Multiple queries
Question: how much perturbation do we have if we want
to answer n counting queries with Laplace under ε-DP?

If we don’t renormalize this is of the order of

comparable to the sample error.
O
⇣ p

n

✏
global

⌘

7
Advanced Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if
we want to answer n queries under (ε,δ)-DP?

O
⇣ 1

✏
global

p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]

8

Question: Can we do better?

Multiple queries

9

We always need to think before applying
composition to whether we have other options!

Composition

10Sparse vector

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D

q1

q2

…
qn

q3

qi(D) ≥ T?
a1

a3

⊥

⊥

SparseVector(D,q1,…,qn,T,ε)

✔

✘

✔

✘

How can we achieve epsilon-DP by paying
only for the queries above T?

An example: above threshold
3.6. The sparse vector technique 267

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., and a threshold T . Output is a
stream of responses a1, . . .

AboveThreshold(D, {fi}, T, ϵ)
Let T̂ = T + Lap

(
2
ϵ

)
.

for Each query i do
Let νi = Lap(4

ϵ)
if fi(D) + νi ≥ T̂ then

Output ai = ⊤.
Halt.

else
Output ai = ⊥.

end if
end for

Theorem 3.23. AboveThreshold is (ϵ, 0)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let A denote
the random variable representing the output of AboveThresh-
old(D, {fi}, T, ϵ) and let A′ denote the random variable representing
the output of AboveThreshold(D′, {fi}, T, ϵ). The output of the algo-
rithm is some realization of these random variables, a ∈ {⊤, ⊥}k and
has the form that for all i < k, ai = ⊥ and ak = ⊤. There are two
types of random variables internal to the algorithm: the noisy thresh-
old T̂ and the perturbations to each of the k queries, {νi}k

i=1. For the
following analysis, we will fix the (arbitrary) values of ν1, . . . , νk−1 and
take probabilities over the randomness of νk and T̂ . Define the fol-
lowing quantity representing the maximum noisy value of any query
f1, . . . , fk−1 evaluated on D:

g(D) = max
i<k

(fi(D) + νi)

In the following, we will abuse notation and write Pr[T̂ = t] as short-
hand for the pdf of T̂ evaluated at t (similarly for νk), and write 1[x]
to denote the indicator function of event x. Note that fixing the values

An example: above threshold
3.6. The sparse vector technique 267

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., and a threshold T . Output is a
stream of responses a1, . . .

AboveThreshold(D, {fi}, T, ϵ)
Let T̂ = T + Lap

(
2
ϵ

)
.

for Each query i do
Let νi = Lap(4

ϵ)
if fi(D) + νi ≥ T̂ then

Output ai = ⊤.
Halt.

else
Output ai = ⊥.

end if
end for

Theorem 3.23. AboveThreshold is (ϵ, 0)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let A denote
the random variable representing the output of AboveThresh-
old(D, {fi}, T, ϵ) and let A′ denote the random variable representing
the output of AboveThreshold(D′, {fi}, T, ϵ). The output of the algo-
rithm is some realization of these random variables, a ∈ {⊤, ⊥}k and
has the form that for all i < k, ai = ⊥ and ak = ⊤. There are two
types of random variables internal to the algorithm: the noisy thresh-
old T̂ and the perturbations to each of the k queries, {νi}k

i=1. For the
following analysis, we will fix the (arbitrary) values of ν1, . . . , νk−1 and
take probabilities over the randomness of νk and T̂ . Define the fol-
lowing quantity representing the maximum noisy value of any query
f1, . . . , fk−1 evaluated on D:

g(D) = max
i<k

(fi(D) + νi)

In the following, we will abuse notation and write Pr[T̂ = t] as short-
hand for the pdf of T̂ evaluated at t (similarly for νk), and write 1[x]
to denote the indicator function of event x. Note that fixing the values

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

Different setup for  
δ=0 or δ≠0

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

A counter for how
many queries above

the threshold.

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

We reset the threshold

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

12
Multiple AboveThresholds3.6. The sparse vector technique 271

Algorithm 2 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

Sparse(D, {fi}, T, c, ϵ, δ)

If δ = 0 Let σ = 2c
ϵ . Else Let σ =

√
32c ln 1

δ
ϵ

Let T̂0 = T + Lap(σ)
Let count = 0
for Each query i do

Let νi = Lap(2σ)
if fi(D) + νi ≥ T̂count then

Output ai = ⊤.
Let count = count +1.
Let T̂count = T + Lap(σ)

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

using the answers supplied by AboveThreshold. When AboveThresh-
old halts (after 1 above threshold query), we simply restart
Sparse(D, {fi}, T, ϵ′) on the remaining stream, and continue in this
manner until we have restarted AboveThreshold c times. After the
c’th restart of AboveThreshold halts, we halt as well. We have already
proven that AboveThreshold(D, {fi}, T, ϵ′) is (ϵ′, 0) differentially pri-
vate. Finally, by the advanced composition theorem (Theorem 3.20), c
applications of an ϵ′ = ϵ√

8c ln 1
δ

-differentially private algorithm is (ϵ, δ)-
differentially private, and c applications of an ϵ′ = ϵ/c differentially
private algorithm is (ϵ, 0)-private as desired.

It remains to prove accuracy for Sparse, by again observing that
Sparse consists only of c calls to AboveThreshold. We note that if each

The privacy analysis 
just uses composition.

13
Numeric Multiple AboveThresholds3.6. The sparse vector technique 273

Algorithm 3 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

NumericSparse(D, {fi}, T, c, ϵ, δ)
If δ = 0 Let ϵ1 ← 8

9ϵ, ϵ2 ← 2
9ϵ. Else Let ϵ1 =

√
512√

512+1ϵ, ϵ2 = 2√
512+1

If δ = 0 Let σ(ϵ) = 2c
ϵ . Else Let σ(ϵ) =

√
32c ln 2

δ
ϵ

Let T̂0 = T + Lap(σ(ϵ1))
Let count = 0
for Each query i do

Let νi = Lap(2σ(ϵ1))
if fi(D) + νi ≥ T̂count then

Let υi ← Lap(σ(ϵ2))
Output ai = fi(D) + υi.
Let count = count +1.
Let T̂count = T + Lap(σ(ϵ1))

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

Definition 3.10 (Numeric Accuracy). We will say that an algorithm
which outputs a stream of answers a1, . . . , ∈ (R ∪ {⊥})∗ in response
to a stream of k queries f1, . . . , fk is (α, β)-accurate with respect to a
threshold T if except with probability at most β, the algorithm does
not halt before fk, and for all ai ∈ R:

|fi(D) − ai| ≤ α

and for all ai = ⊥:
fi(D) ≤ T + α.

13
Numeric Multiple AboveThresholds3.6. The sparse vector technique 273

Algorithm 3 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., a threshold T , and a cutoff point
c. Output is a stream of answers a1, . . .

NumericSparse(D, {fi}, T, c, ϵ, δ)
If δ = 0 Let ϵ1 ← 8

9ϵ, ϵ2 ← 2
9ϵ. Else Let ϵ1 =

√
512√

512+1ϵ, ϵ2 = 2√
512+1

If δ = 0 Let σ(ϵ) = 2c
ϵ . Else Let σ(ϵ) =

√
32c ln 2

δ
ϵ

Let T̂0 = T + Lap(σ(ϵ1))
Let count = 0
for Each query i do

Let νi = Lap(2σ(ϵ1))
if fi(D) + νi ≥ T̂count then

Let υi ← Lap(σ(ϵ2))
Output ai = fi(D) + υi.
Let count = count +1.
Let T̂count = T + Lap(σ(ϵ1))

else
Output ai = ⊥.

end if
if count ≥ c then

Halt.
end if

end for

Definition 3.10 (Numeric Accuracy). We will say that an algorithm
which outputs a stream of answers a1, . . . , ∈ (R ∪ {⊥})∗ in response
to a stream of k queries f1, . . . , fk is (α, β)-accurate with respect to a
threshold T if except with probability at most β, the algorithm does
not halt before fk, and for all ai ∈ R:

|fi(D) − ai| ≤ α

and for all ai = ⊥:
fi(D) ≤ T + α.

We add fresh noise 
before returning 

the result of the query

14
Accuracy for AboveThreshold

268 Basic Techniques and Composition Theorems

of ν1, . . . , νk−1 (which makes g(D) a deterministic quantity), we have:

Pr
T̂ ,νk

[A = a] = Pr
T̂ ,νk

[T̂ > g(D) and fk(D) + νk ≥ T̂]

= Pr
T̂ ,νk

[T̂ ∈ (g(D), fk(D) + νk]]

=
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v]

· Pr[T̂ = t]1[t ∈ (g(D), fk(D) + v]]dvdt
.= ∗

We now make a change of variables. Define:

v̂ = v + g(D) − g(D′) + fk(D′) − fk(D)

t̂ = t + g(D) − g(D′)
and note that for any D, D′, |v̂ − v| ≤ 2 and |t̂ − t| ≤ 1. This follows
because each query fi(D) is 1-sensitive, and hence the quantity g(D)
is 1-sensitive as well. Applying this change of variables, we have:

∗ =
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v̂] · Pr[T̂ = t̂]1[(t + g(D) − g(D′))

∈ (g(D), fk(D′) + v + g(D) − g(D′)]]dvdt

=
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v̂] · Pr[T̂ = t̂]1[(t ∈ (g(D′), fk(D′) + v]]dvdt

≤
∫ ∞

−∞

∫ ∞

−∞
exp(ϵ/2) Pr[νk = v]

· exp(ϵ/2) Pr[T̂ = t]1[(t ∈ (g(D′), fk(D′) + v]]dvdt

= exp(ϵ) Pr
T̂ ,νk

[T̂ > g(D′) and fk(D′) + νk ≥ T̂]

= exp(ϵ) Pr
T̂ ,νk

[A′ = a]

where the inequality comes from our bounds on |v̂ − v| and |t̂ − t| and
the form of the pdf of the Laplace distribution.

Definition 3.9 (Accuracy). We will say that an algorithm which outputs
a stream of answers a1, . . . , ∈ {⊤, ⊥}∗ in response to a stream of k

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

15
Accuracy for AboveThreshold

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

15
Accuracy for AboveThreshold

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

15
Accuracy for AboveThreshold

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

16
Accuracy for AboveThreshold

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

270 Basic Techniques and Composition Theorems

Similarly, for any ai = ⊥ we have:

fi(D) < T̂ ≤ T + |T − T̂ | + |νi| ≤ T + α

We will also have that for any i < k: fi(D) < T −α < T − |νi|− |T − T̂ |,
and so: fi(D) + νi ≤ T̂ , meaning ai = ⊥. Therefore the algorithm does
not halt before k queries are answered.

We now complete the proof.
Recall that if Y ∼ Lap(b), then: Pr[|Y | ≥ t ·b] = exp(−t). Therefore

we have:
Pr[|T − T̂ | ≥ α

2] = exp
(

−ϵα

4

)

Setting this quantity to be at most β/2, we find that we require α ≥
4 log(2/β)

ϵ
Similarly, by a union bound, we have:

Pr[max
i∈[k]

|νi| ≥ α/2] ≤ k · exp
(

−ϵα

8

)

Setting this quantity to be at most β/2, we find that we require α ≥
8(log(2/β)+log k)

ϵ These two claims combine to prove the theorem.

We now show how to handle multiple “above threshold” queries
using composition.

The Sparse algorithm can be thought of as follows: As queries come
in, it makes repeated calls to AboveThreshold. Each time an above
threshold query is reported, the algorithm simply restarts the remain-
ing stream of queries on a new instantiation of AboveThreshold. It
halts after it has restarted AboveThreshold c times (i.e. after c above
threshold queries have appeared). Each instantiation of AboveThresh-
old is (ϵ, 0)-private, and so the composition theorems apply.

Theorem 3.25. Sparse is (ϵ, δ)-differentially private.

Proof. We observe that Sparse is exactly equivalent to the following
procedure: We run AboveThreshold(D, {fi}, T, ϵ′) on our stream of
queries {fi} setting

ϵ′ =

⎧
⎨

⎩

ϵ
c , If δ = 0;

ϵ√
8c ln 1

δ

, Otherwise.

17
Accuracy for AboveThreshold

3.6. The sparse vector technique 269

queries f1, . . . , fk is (α, β)-accurate with respect to a threshold T if
except with probability at most β, the algorithm does not halt before
fk, and for all ai = ⊤:

fi(D) ≥ T − α

and for all ai = ⊥:
fi(D) ≤ T + α.

What can go wrong in Algorithm 1? The noisy threshold T̂ can be
very far from T , say, |T̂ − T | > α. In addition a small count fi(D) <
T − α can have so much noise added to it that it is reported as above
threshold (even when the threshold is close to correct), and a large
count fi(D) > T + α can be reported as below threshold. All of these
happen with probability exponentially small in α. In summary, we can
have a problem with the choice of the noisy threshold or we can have a
problem with one or more of the individual noise values νi. Of course,
we could have both kinds of errors, so in the analysis below we allocate
α/2 to each type.

Theorem 3.24. For any sequence of k queries f1, . . . , fk such that
|{i < k : fi(D) ≥ T − α}| = 0 (i.e. the only query close to being
above threshold is possibly the last one), AboveThreshold(D, {fi}, T, ϵ)
is (α, β) accurate for:

α = 8(log k + log(2/β))
ϵ

.

Proof. Observe that the theorem will be proved if we can show that
except with probability at most β:

max
i∈[k]

|νi| + |T − T̂ | ≤ α

If this is the case, then for any ai = ⊤, we have:

fi(D) + νi ≥ T̂ ≥ T − |T − T̂ |

or in other words:

fi(D) ≥ T − |T − T̂ | − |νi| ≥ T − α

270 Basic Techniques and Composition Theorems

Similarly, for any ai = ⊥ we have:

fi(D) < T̂ ≤ T + |T − T̂ | + |νi| ≤ T + α

We will also have that for any i < k: fi(D) < T −α < T − |νi|− |T − T̂ |,
and so: fi(D) + νi ≤ T̂ , meaning ai = ⊥. Therefore the algorithm does
not halt before k queries are answered.

We now complete the proof.
Recall that if Y ∼ Lap(b), then: Pr[|Y | ≥ t ·b] = exp(−t). Therefore

we have:
Pr[|T − T̂ | ≥ α

2] = exp
(

−ϵα

4

)

Setting this quantity to be at most β/2, we find that we require α ≥
4 log(2/β)

ϵ
Similarly, by a union bound, we have:

Pr[max
i∈[k]

|νi| ≥ α/2] ≤ k · exp
(

−ϵα

8

)

Setting this quantity to be at most β/2, we find that we require α ≥
8(log(2/β)+log k)

ϵ These two claims combine to prove the theorem.

We now show how to handle multiple “above threshold” queries
using composition.

The Sparse algorithm can be thought of as follows: As queries come
in, it makes repeated calls to AboveThreshold. Each time an above
threshold query is reported, the algorithm simply restarts the remain-
ing stream of queries on a new instantiation of AboveThreshold. It
halts after it has restarted AboveThreshold c times (i.e. after c above
threshold queries have appeared). Each instantiation of AboveThresh-
old is (ϵ, 0)-private, and so the composition theorems apply.

Theorem 3.25. Sparse is (ϵ, δ)-differentially private.

Proof. We observe that Sparse is exactly equivalent to the following
procedure: We run AboveThreshold(D, {fi}, T, ϵ′) on our stream of
queries {fi} setting

ϵ′ =

⎧
⎨

⎩

ϵ
c , If δ = 0;

ϵ√
8c ln 1

δ

, Otherwise.

