CSE660 Differential Privacy October 4, 2017

Marco Gaboardi Room: 338-B gaboardi@buffalo.edu http://www.buffalo.edu/~gaboardi

(ϵ, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Composition

The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n)$ -DP

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ϵ -DP?

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

We can split the privacy budget uniformly:

$$\epsilon = rac{\epsilon_{\mathsf{global}}}{n}$$

Laplace accuracy: with high probability we have: $\left|q(D) - r\right| \leq O\left(\frac{1}{\epsilon n}\right)$

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

By putting them together (hiding some details) we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Notice that if we don't renormalize this is of the order of $O\left(\frac{n}{\epsilon_{\text{global}}}\right)$ bigger than the sample error.

Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of $O\Big(\frac{\sqrt{n}}{\epsilon_{\rm global}}\Big)$ comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]

Question: Can we do better?

Composition

We always need to think before applying composition to whether we have other options!

Sparse vector

10

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

How can we achieve epsilon-DP by paying only for the queries above T?

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$

If
$$\delta = 0$$
 Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \operatorname{Lap}(2\sigma)$
if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then
Output $a_i = \top$.
Let count = count +1.
Let $\hat{T}_{\text{count}} = T + \operatorname{Lap}(\sigma)$
else
Output $a_i = \bot$.
end if
if count $\ge c$ then
Halt.
end if
end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

Sparse
$$(D, \{f_i\}, T, c, \epsilon, \delta)$$

If $\delta = 0$ Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \text{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \text{Lap}(2\sigma)$
if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then
Output $a_i = \top$.
Let count = count +1.
Let $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma)$
else
Output $a_i = \bot$.
end if
if count $\ge c$ then
Halt.
end if

end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$

If
$$\delta = 0$$
 Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \operatorname{Lap}(2\sigma)$
if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then
Output $a_i = \top$.
Let count = count +1.
Let $\hat{T}_{\text{count}} = T + \operatorname{Lap}(\sigma)$
else
Output $a_i = \bot$.
end if
if count $\ge c$ then
Halt.
end if
end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$ If $\delta = 0$ Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$ Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$ Let count = 0for Each query *i* do Let $\nu_i = \text{Lap}(2\sigma)$ if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then Output $a_i = \top$. Let count = count +1. Let $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma)$ else Output $a_i = \bot$. end if if $\operatorname{count} \geq c$ then Halt. end if

end for

A counter for how many queries above the threshold.

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$

If
$$\delta = 0$$
 Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \operatorname{Lap}(2\sigma)$
if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then
Output $a_i = \top$.
Let count = count +1.
Let $\hat{T}_{\text{count}} = T + \operatorname{Lap}(\sigma)$
else
Output $a_i = \bot$.
end if
if count $\ge c$ then
Halt.
end if
end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\begin{aligned} \overline{\mathbf{Sparse}}(D, \{f_i\}, T, c, \epsilon, \delta) \\ \mathbf{If} \ \delta &= 0 \ \mathbf{Let} \ \sigma = \frac{2c}{\epsilon}. \ \mathbf{Else} \ \mathbf{Let} \ \sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon} \\ \mathbf{Let} \ \hat{T}_0 &= T + \operatorname{Lap}(\sigma) \\ \mathbf{Let} \ \operatorname{count} &= 0 \\ \mathbf{for} \ \mathrm{Each} \ \mathrm{query} \ i \ \mathbf{do} \\ \mathbf{Let} \ \nu_i &= \operatorname{Lap}(2\sigma) \\ \mathbf{if} \ f_i(D) + \nu_i &\geq \hat{T}_{\mathrm{count}} \ \mathbf{then} \\ \mathbf{Output} \ a_i &= \top. \\ \mathbf{Let} \ \widehat{c}_{\mathrm{count}} &= T + \operatorname{Lap}(\sigma) \\ \mathbf{else} \\ \mathbf{Output} \ a_i &= \bot. \end{aligned}$

We reset the threshold

Output $a_i = \bot$. end if if count $\ge c$ then Halt. end if end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$

If
$$\delta = 0$$
 Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \operatorname{Lap}(2\sigma)$
if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then
Output $a_i = \top$.
Let count = count +1.
Let $\hat{T}_{\text{count}} = T + \operatorname{Lap}(\sigma)$
else
Output $a_i = \bot$.
end if
if count $\ge c$ then
Halt.
end if
end for

Algorithm 2 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots

 $\mathbf{Sparse}(D, \{f_i\}, T, c, \epsilon, \delta)$

If
$$\delta = 0$$
 Let $\sigma = \frac{2c}{\epsilon}$. Else Let $\sigma = \frac{\sqrt{32c \ln \frac{1}{\delta}}}{\epsilon}$
Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma)$
Let count = 0
for Each query *i* do
Let $\nu_i = \operatorname{Lap}(2\sigma)$

if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then Output $a_i = \top$.

Let $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma)$

else

end for

Output $a_i = \bot$. end if if count $\ge c$ then Halt. end if The privacy analysis just uses composition.

Numeric Multiple AboveThresholds

Algorithm 3 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots NumericSparse $(D, \{f_i\}, T, c, \epsilon, \delta)$ If $\delta = 0$ Let $\epsilon_1 \leftarrow \frac{8}{9}\epsilon$, $\epsilon_2 \leftarrow \frac{2}{9}\epsilon$. Else Let $\epsilon_1 = \frac{\sqrt{512}}{\sqrt{512}+1}\epsilon$, $\epsilon_2 = \frac{2}{\sqrt{512}+1}$ If $\delta = 0$ Let $\sigma(\epsilon) = \frac{2c}{\epsilon}$. Else Let $\sigma(\epsilon) = \frac{\sqrt{32c \ln \frac{2}{\delta}}}{\epsilon}$ Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma(\epsilon_1))$ Let count = 0for Each query *i* do Let $\nu_i = \text{Lap}(2\sigma(\epsilon_1))$ if $f_i(D) + \nu_i \geq \hat{T}_{\text{count}}$ then Let $v_i \leftarrow \text{Lap}(\sigma(\epsilon_2))$ Output $a_i = f_i(D) + v_i$. Let count = count + 1. Let $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma(\epsilon_1))$ else Output $a_i = \bot$. end if if count > c then Halt. end if end for

Numeric Multiple AboveThresholds

Algorithm 3 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , a threshold T, and a cutoff point c. Output is a stream of answers a_1, \ldots NumericSparse $(D, \{f_i\}, T, c, \epsilon, \delta)$ If $\delta = 0$ Let $\epsilon_1 \leftarrow \frac{8}{9}\epsilon$, $\epsilon_2 \leftarrow \frac{2}{9}\epsilon$. Else Let $\epsilon_1 = \frac{\sqrt{512}}{\sqrt{512}+1}\epsilon$, $\epsilon_2 = \frac{2}{\sqrt{512}+1}$ If $\delta = 0$ Let $\sigma(\epsilon) = \frac{2c}{\epsilon}$. Else Let $\sigma(\epsilon) = \frac{\sqrt{32c \ln \frac{2}{\delta}}}{\epsilon}$ Let $\hat{T}_0 = T + \operatorname{Lap}(\sigma(\epsilon_1))$ Let count = 0for Each query *i* do Let $\nu_i = \text{Lap}(2\sigma(\epsilon_1))$ We add fresh noise if $f_i(D) + \nu_i \ge \hat{T}_{\text{count}}$ then Let $v_i \leftarrow \operatorname{Lap}(\sigma(\epsilon_2))$ before returning Output $a_i = f_i(D) + v_i$. Let count = count + 1. the result of the query Let $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma(\epsilon_1))$ else Output $a_i = \bot$. end if if count > c then Halt. end if

end for

Definition 3.9 (Accuracy). We will say that an algorithm which outputs a stream of answers $a_1, \ldots, \in \{\top, \bot\}^*$ in response to a stream of kqueries f_1, \ldots, f_k is (α, β) -accurate with respect to a threshold T if except with probability at most β , the algorithm does not halt before f_k , and for all $a_i = \top$:

$$f_i(D) \ge T - \alpha$$

and for all $a_i = \bot$:

 $f_i(D) \le T + \alpha.$

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \ge T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), AboveThreshold $(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}$$

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \ge T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), AboveThreshold $(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}$$

Proof. Observe that the theorem will be proved if we can show that except with probability at most β :

$$\max_{i \in [k]} |\nu_i| + |T - \hat{T}| \le \alpha$$

If this is the case, then for any $a_i = \top$, we have:

$$f_i(D) + \nu_i \ge \hat{T} \ge T - |T - \hat{T}|$$

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \ge T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), AboveThreshold $(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}$$

Proof. Observe that the theorem will be proved if we can show that except with probability at most β :

$$\max_{i \in [k]} |\nu_i| + |T - \hat{T}| \le \alpha$$

If this is the case, then for any $a_i = \top$, we have:

$$f_i(D) + \nu_i \ge \hat{T} \ge T - |T - \hat{T}|$$

or in other words:

$$f_i(D) \ge T - |T - \hat{T}| - |\nu_i| \ge T - \alpha$$

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \ge T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), AboveThreshold $(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}$$

Similarly, for any $a_i = \bot$ we have:

$$f_i(D) < \hat{T} \le T + |T - \hat{T}| + |\nu_i| \le T + \alpha$$

We will also have that for any i < k: $f_i(D) < T - \alpha < T - |\nu_i| - |T - \hat{T}|$, and so: $f_i(D) + \nu_i \leq \hat{T}$, meaning $a_i = \bot$. Therefore the algorithm does not halt before k queries are answered.

Theorem 3.24. For any sequence of k queries f_1, \ldots, f_k such that $|\{i < k : f_i(D) \ge T - \alpha\}| = 0$ (i.e. the only query close to being above threshold is possibly the last one), AboveThreshold $(D, \{f_i\}, T, \epsilon)$ is (α, β) accurate for:

$$\alpha = \frac{8(\log k + \log(2/\beta))}{\epsilon}$$

Recall that if $Y \sim \text{Lap}(b)$, then: $\Pr[|Y| \ge t \cdot b] = \exp(-t)$. Therefore we have:

$$\Pr[|T - \hat{T}| \ge \frac{\alpha}{2}] = \exp\left(-\frac{\epsilon\alpha}{4}\right)$$

Setting this quantity to be at most $\beta/2$, we find that we require $\alpha \geq \frac{4\log(2/\beta)}{2}$

Similarly, by a union bound, we have:

$$\Pr[\max_{i \in [k]} |\nu_i| \ge \alpha/2] \le k \cdot \exp\left(-\frac{\epsilon\alpha}{8}\right)$$

Setting this quantity to be at most $\beta/2$, we find that we require $\alpha \geq \frac{8(\log(2/\beta) + \log k)}{\epsilon}$ These two claims combine to prove the theorem. \Box