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(€,0)-Differential Privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

PriQ(bi)e S] < exp(€)Pr[Q(b2)e S] + O




Composition
My is €4-DP
< >
Mo is €2-DP
< >
Mn is en-DP
< >

[ The overall process is (€1+€2+...+€n)-DP }




Multiple queries




Multiple queries

We can split the privacy budget uniformly:

€global
n

cE —

Laplace accuracy: with high probability we have:

o) -] <0(2)

€N




Multiple queries

By putting them together (hiding some details) we have as a

max error
n 1
() =9()
€global 7! €global

[Notice that if we don’t renormalize this is of the order of
()
€global

_bigger than the sample error. )

~
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Advanced Composition

We have (by hiding many details) as a max error

v ( Eglob: \/ﬁ)

(If we don’t renormalize this is of the order of

o( %)
€global
_.comparable to the sample error. )

[DworkRothblumVadhan 10, SteinkeUllman 1 6]



Answering multiple queries

We have seen several methods to answer a single query:
- Randomized Response

- Laplace Mechanism

- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer \/n queries.
- Advanced composition - we can answer n queries.




Sparse vector 9

SparseVector(D,q1,...,0n, 1,€)

How can we achieve epsilon-DP by paying
only for the queries above T7?
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Multiple queries




Answering multiple queries

When we use the basic mechanisms and then the
composition theorems we are:
- adding independent noise to each query

- give a worst-case bound on the privacy loss of the
composed analysis.

It turned out that we can do better if we correlate the noise
of individual queries.
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Answering multiple queries

Intuitively: consider the following two queries:

[ We could save in privacy budget it we give the ]

same answer to both of them.
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Data Release
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Private Data Release

{Qi,...,.Qn} {Qi,...,.Qn}
N \ N
&8 | o @5

|




Linear Queries

® A linear query ¢ : X" — [0,1] is a function
averaging the value of a function ¢ : X — [0, 1]
over the elements of the dataset.

® |n symbols:
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Private Data Release

Given a database DeXn, a set of queries

Q={qi,...,q} and a target accuracy & we want
to generate a differentially private synthetic
database D’eX™ such that:

max |g(D) — q(D")| < «
nas (D) — q(D")| <



SmallDB: Answering
multiple linear queries

Algorithm 5 Pseudo-code for SmallDB
1: function SMALLDB(D, Q, ¢, )
2: Let m = bi—'ﬁ'
3: Let u: X" x X" — R be defined as:

u(D, D;) = — T [q(D) — q(D;)|

4: Let D' < Mg(D,u,¢)
5: return D’

6: end function




SmallDB: Answering
multiple linear queries

-

Privacy theorem:

SMALLDB(D, Q, €, ) IS e-differentially private.

\_

Proof: Trivial, It is just an application of the exponential
mechanism.



SmallDB: Answering s
multiple linear queries

Accuracy theorem:
SMALLDB(D, Q,¢,a) outputs a dataset D’ such that
approximately

max |lg(D) — q(D")] < «
nas q(D) — q(D")] <




Sampling bound

-

Sampling Bound Lemma:
For every DeX" and set of linear queries Q there exists

a dataset D’eXm with m = loiL@ such that
max |g(D) — q(D")| < «
\ nas [q(D) — q(D")] <

Proof sketch: Let D' be composed by m records of D
sampled uniformly at random. We want to show that
Prlmax|q(D) — ¢(D")] > a] < 1
geq)
where the probability is taken over the choice of D'. This
show that there exists one such D’ satisfying the lemma.



Sampling bound

(Sampling Bound Lemma:
For every DeX" and set of linear queries Q there exists

a dataset D’eXm with m = loi—L@ such that
max |g(D) — ¢(D")| < «

21

L qel)
Proof sketch: For each d’; we have:
1
Ela(d)] = Y~ ~a(d;) = a(D)
j=1
and so ;o
Elq(D)] = — > Ela(d,)] = a(D)



Additive Chernoff Bound

[
Theorem 1.2 (Additive Chernoff Bound). Let X, ..., X, be i.i.d ran-

dom wvariables such that 0 < X; < 1 for every 1 < ¢ < n. Let

S = 15" | X; denote their mean and E[S] their expected mean, where

T n
E[S] = 13" | E[X;] by linearity of expectation, then for every A we
have:

- J

Pr[|S — E[S]| > A] < 22"
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Sampling bound

4 )

Sampling Bound Lemma:
For every DeX" and set of linear queries Q there exists

a dataset D’eXm with m = loi—L@ such that

max |g(D) — a(D)| < «
\ nas [q(D) — q(D")] < )

Proof sketch: Using Chernoff bound we have:
Pr(|g(D) — q(D)| > o] < 2e72m

and by union bound for all the queries in Q we have

Primax |¢(D) — q(D")] > o] < 2/Qle™*"
q
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Sampling bound

4 )

Sampling Bound Lemma:
For every DeX" and set of linear queries Q there exists

a dataset D’eXm with m = loi—L@ such that

max |g(D) — g(D)| < «
\ nas lq(D) — q(D")] < )

Proof sketch: From

Primax|g(D) — ¢(D')| > a] < 2/Qe*"
supstituting m = 10ng| for |Q|>2, we can conclude:

Primax|q(D) — ¢(D)| > a] <1




