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(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy
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USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP 
M2 is ε2-DP 

…
Mn is εn-DP 

The overall process is (ε1+ε2+…+εn)-DP 
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Question: how much perturbation do we have if we want 
to answer n counting queries with Laplace under ε-DP?

Multiple queries
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Laplace accuracy: with high probability we have:
���q(D)� r

���  O
⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏
global

n

Multiple queries
Question: how much perturbation do we have if we want 
to answer n counting queries with Laplace under ε-DP?
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By putting them together (hiding some details) we have as a 
max error

O
⇣ n

✏
global

n

⌘
= O

⇣ 1

✏
global

⌘

Notice that if we don’t renormalize this is of the order of
O
⇣ n

✏
global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.

Multiple queries
Question: how much perturbation do we have if we want 
to answer n counting queries with Laplace under ε-DP?



If we don’t renormalize this is of the order of

comparable to the sample error.
O
⇣ p

n

✏
global

⌘
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Advanced Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O
⇣ 1

✏
global

p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]
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Answering multiple queries
We have seen several methods to answer a single query: 
- Randomized Response 
- Laplace Mechanism 
- Exponential Mechanism 

And methods to answer multiple queries with small error: 
- Standard composition - we can answer √n queries. 
- Advanced composition - we can answer n queries.

Question: Can we do better?



9Sparse vector

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D

q1

q2

…
qn

q3

qi(D) ≥ T?
a1

a3

⊥

⊥

SparseVector(D,q1,…,qn,T,ε)

✔

✘

✔

✘

How can we achieve epsilon-DP by paying  
only for the queries above T?
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Question: Can we do better?

Multiple queries
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Answering multiple queries
When we use the basic mechanisms and then the 
composition theorems we are: 
- adding independent noise to each query 
- give a worst-case bound on the privacy loss of the 

composed analysis. 

It turned out that we can do better if we correlate the noise  
of individual queries. 
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Answering multiple queries
Intuitively: consider the following two queries:

How many people in the database have disease D5.

How many people, not named Marco, in the database 
have disease D5.

We could save in privacy budget if we give the 
same answer to both of them.



Data Release
{Q1,...,Qn} {Q1,...,Qn}
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Linear Queries

• A linear query                      is a function 
averaging the value of a function              
over the elements of the dataset.

• In symbols:

15

1.4. Statistical Queries 5

We will call two datasets D, DÕ œ X n adjacent, denoted D ≥1 DÕ if
D�DÕ Æ 1.

Notice that two databases are adjacent according to this definition
if they are equal or if they have the same number of records and all of
the records are equal except for one position k Æ n where d

k

”= dÕ
k

.

1.4 Statistical Queries

While di�erential privacy is more and more considered in di�erent
kind of data analysis, it’s conception is closely related to the setting
of queries over statistical datasets [2, 5, 1, 4], where one is interested
in releasing several statistics about the data and she want to do this
in a privacy-preserving manner. Nowadays, the boundaries between
statistics, machine learning, optimization, etc. are less rigid than in the
past and so di�erential privacy is finding wider interest and applications.
However, the statistical setting is still one of the primary applications
for di�erential privacy. In the sequel we will use it as one of the main
intended applications for the algorithms that we will present, although
we will also present some algorithms from other areas, so we are going
now to formalize this setting.

The first class of queries we will consider are counting queries.

Definition 1.4 (Counting Queries). Let q : X æ {0, 1} be a predicate
on records in X . A counting query q : X æ [0, 1] is a function counting
the fraction of people in a dataset D œ X n satisfying the predicate q.
In symbols:

q(D) = 1
n

nÿ

i=1
q(d

i

)

Notice that we use the same symbol q for the predicate and the
counting query characterized by this predicate. We will explicitly dis-
ambiguate when the notation can create confusion.

While counting queries can seem very simple, they are already quite
expressive and sometimes we will restrict our attention to subclasses.
Some examples (see also [8]) of counting queries, and associated statistics,
are:

1.5. Di�erential Privacy 7

a conjunction query q
v̨

on a dataset D œ X n gives the k-way
marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1
q(d

i

)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, DÕ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e‘ Pr[M(DÕ) = r] (1.1)

In words, the algorithm M is ‘-di�erentially private if for every
possible subsets of outputs S the probability that M outputs a value r

when run on two adjacent datasets is similar, where this similarity is

1.5. Di�erential Privacy 7

a conjunction query q
v̨

on a dataset D œ X n gives the k-way
marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1
q(d

i

)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, DÕ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e‘ Pr[M(DÕ) = r] (1.1)

In words, the algorithm M is ‘-di�erentially private if for every
possible subsets of outputs S the probability that M outputs a value r

when run on two adjacent datasets is similar, where this similarity is



Private Data Release
Given a database D∈Xn, a set of queries 
Q={q1,...,qk} and a target accuracy α we want 
to generate a differentially private synthetic 
database D’∈Xm such that:

max

q2Q
|q(D)� q(D0

)|  ↵



17SmallDB: Answering 
multiple linear queries

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function



18SmallDB: Answering 
multiple linear queries

Privacy theorem:
                           is ε-differentially private.

Proof: Trivial, It is just an application of the exponential 
mechanism.

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function



19SmallDB: Answering 
multiple linear queries

Accuracy theorem:
                              outputs a dataset D’ such that 
approximately 

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function

max

q2Q
|q(D)� q(D0

)|  ↵
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Sampling bound

Sampling Bound Lemma:
For every D∈Xn and set of linear queries Q there exists 
a dataset D’∈Xm with                   such that

max

q2Q
|q(D)� q(D0

)|  ↵

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function

Proof sketch: Let D’ be composed by m records of D 
sampled uniformly at random. We want to show that 

where the probability is taken over the choice of D’. This 
show that there exists one such D’ satisfying the lemma.

Pr[max

q2Q
|q(D)� q(D0

)| > ↵] < 1
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Sampling bound

Sampling Bound Lemma:
For every D∈Xn and set of linear queries Q there exists 
a dataset D’∈Xm with                   such that

max

q2Q
|q(D)� q(D0

)|  ↵

1.12. Example: releasing an approximate Cumulative Distribution
Function 27
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1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function

Proof sketch: For each d’i we have: 

and so

E[q(d0i)] =
nX

j=1

1

n
q(dj) = q(D)

E[q(D0)] =
1

m

mX

i=1

E[q(dj)] = q(D)



Additive Chernoff Bound

1.6. An example: Randomized Response 11

individual predicate. Indeed, just releasing the noised vector would be
di�erentially private.

However, this fact becomes important when we want to evaluate
how good is the answer given by the algorithm. Indeed, in general
having a di�erential privacy guarantee is not enough to show that an
algorithm is interesting. We need also to provide evidence that the
algorithm returns an answer which is useful. This can be done mainly in
two ways: through an experimental evaluation or by providing a useful
theoretical accuracy analysis. Often this kind of theoretical analysis can
be formulated with a formula of the shape

Pr[X Ø –] Æ —

where X is a random variable representing a quantitative relation
between the result of the di�erentially private algorithm with respect
to the problem that the algorithm is solving, 1 ≠ — is the probability
with which – gives a bound on how close these two quantities are. For
example if we denote a the answer of the algorithm without noise and
â the ones with noise, we can write

Pr[|a ≠ â| Ø –] Æ —

to say that with probability at least 1 ≠ — the di�erence between the
noised answer and the one without noise will be bound by –.

Before giving the accuracy guarantee for Randomized Response we
need to introduce a tool that will be useful to describe it.

Theorem 1.2 (Additive Cherno� Bound). Let X1, . . . , X
n

be i.i.d ran-
dom variables such that 0 Æ X

i

Æ 1 for every 1 Æ i Æ n. Let
S = 1

n

q
n

i=1 X
i

denote their mean and E[S] their expected mean, where
E[S] = 1

n

q
n

i=1 E[X
i

] by linearity of expectation, then for every ⁄ we
have:

Pr[|S ≠ E[S]| Ø ⁄] Æ 2e≠2⁄

2
n

The following theorem shows the accuracy guarantee of Randomize-
dResponse for a counting query q.

Theorem 1.3 (Accuracy). The algorithm RandomizedResponse (Algo-
rithm 2) provides the following accuracy guarantee for every dataset D
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Sampling bound

Sampling Bound Lemma:
For every D∈Xn and set of linear queries Q there exists 
a dataset D’∈Xm with                   such that

max

q2Q
|q(D)� q(D0

)|  ↵

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function

Proof sketch: Using Chernoff bound we have: 

and by union bound for all the queries in Q we have

Pr[|q(D)� q(D0)| > ↵]  2e�2m↵2

Pr[max

q2Q
|q(D)� q(D0

)| > ↵]  2|Q|e�2m↵2
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Sampling bound

Sampling Bound Lemma:
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