CSE660 Differential Privacy October 16, 2017

Marco Gaboardi Room: 338-B gaboardi@buffalo.edu http://www.buffalo.edu/~gaboardi

(ϵ, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ϵ -DP?

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

Using standard composition we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Notice that if we don't renormalize this is of the order of $O\left(\frac{n}{\epsilon_{\text{global}}}\right)$ bigger than the sample error.

Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

Using advanced composition we have as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of $O\Big(\frac{\sqrt{n}}{\epsilon_{\rm global}}\Big)$ comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]

Answering multiple queries

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition we can answer \sqrt{n} queries.
- Advanced composition we can answer n queries.

Question: Can we do better?

SmallDB:Answering multiple linear queries

Algorithm 5 Pseudo-code for SmallDB

1: function SMALLDB (D, Q, ϵ, α)

2: Let
$$m = \frac{\log |Q|}{\alpha^2}$$

3: Let $u: \mathcal{X}^n \times \mathcal{X}^m \to \mathbb{R}$ be defined as:

$$u(D, D_i) = -\max_{q \in Q} |q(D) - q(D_i)|$$

4: Let
$$D' \leftarrow \mathcal{M}_E(D, u, \epsilon)$$

- 5: return D'
- 6: end function

SmallDB:Answering multiple linear queries

Equivalently, for any database
$$x$$
 with

$$\begin{aligned} \|x\|_{1} \geq \frac{16 \log |\mathcal{X} \log |\mathcal{Q}| + 4 \log \left(\frac{1}{\beta}\right)}{\varepsilon \alpha^{3}} \end{aligned}$$
with probability $1 - \beta: \max_{f \in \mathcal{Q}} |f(x) - f(y)| \leq \alpha.$

Answering multiple queries⁹

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition we can answer \sqrt{n} queries.
- Advanced composition we can answer n queries.

If we allow coordinating noise among different queries we can answer an exponential number of queries.

Data Release: IDC

Iterative Database Construction

Given a database D, a set of queries $\{Q_1,...,Q_n\}$ and a target accuracy α it generates a sequence $D_1,...,D_n$ of synthetic DBs such that:

- it gives increasingly better approximations of D,
- D_{t+1} is generated by D_t using only one query Q_t maximizing the difference:

 $|Q_t(D) - Q_t(D_t)| \ge k$

• D_n satisfies the target accuracy α .

Private Data Release {Q1,...,Qn}

Private Iterative Database Construction

Given a database D, a set of queries $\{Q_1,...,Q_n\}$ and a target accuracy α it generates a sequence $D_1,...,D_n$ of synthetic DBs such that:

- it gives increasingly better approximations of D,
- D_{t+1} is privately generated by D_t using only one query $Q_t = Q_t + noise$ maximizing the difference:

$$|Q_t(D) - Q_t(D_t)| \ge k$$

• D_n satisfies the target accuracy α .

MWEM

Multiplicative Weight Exponential Mechanism

An algorithm for IDC for linear queries based on:

- the Exponential mechanism to select the query maximizing the difference,
- the Multiplicative Weight update rule to update the database.

Dataset as a distribution 17 over the universe

The algorithm views a dataset D as a distribution over rows $x \in \mathcal{X}$.

$$D(x) = \frac{\#\{i \in [n] : d_i = x\}}{n}$$

Then,

$$q(D) = \mathbb{E}_{x \to D}[q(x)]$$

We denote by D_0 the uniform distribution over \mathcal{X} .

D ₀	1/n	1/n	1/n	1/n	1/n	1/n				1/n
----------------	-----	-----	-----	-----	-----	-----	--	--	--	-----

MW Intuition

19

$$D_i(x) = D_{i-1}(x) \times \exp(q(x) \frac{(q(D) - q(D_{i-1}))}{2n})$$

For a given query q:

- If q(D)>>q(D_{i-1}), we should scale up the weights on records contributing *positively*, and scale down the ones contributing *negatively*,
- If q(D)<<q(D_{i-1}), we should scale down the weights on records contributing *positively*, and scale up the ones contributing *negatively*.

MW Intuition

Let's consider counting queries.

Let's assume $\hat{q}_1(D) - \hat{q}(D_0) = 1$ then $D_1(x_j) = D_0(x_j) \times \exp(\frac{q_1(x_j)}{2n})$

MW Intuition

Let's consider counting queries.

Let's assume $\hat{q}_1(D) - \hat{q}(D_0) = -1$ then $D_1(x_j) = D_0(x_j) \times \exp(\frac{-q_1(x_j)}{2n})$

MWEM

Algorithm 9 Pseudo-code for MWEM

- 1: function MWEM $(D, q_1, \ldots, q_m, T, \epsilon, D_0)$
- 2: for $i \leftarrow 1, \ldots, T$ do

3:
$$u_i(D,q) = |q(D_{i-1}) - q(D)|$$

4:
$$\hat{q} \leftarrow \mathsf{ExpMech}(D, u_i, n\epsilon/2T)$$

5:
$$m_i \leftarrow \hat{q}(D) + \mathsf{Lap}(T/n\epsilon)$$

6:
$$D_i(x) = D_{i-1}(x) \times \exp(\hat{q}(x) \frac{(m - \hat{q}(D_{i-1}))}{2})$$

7:
$$D_i = \operatorname{renormalize}(D_i)$$

8: end for

9: return
$$avg_{i < T}D_i$$

10: end function

MWEM - Privacy

Theorem 1.13. MWEM satisfies ϵ -differential privacy.

Accuracy Theorem: MWEM achieves max-error:

$$\alpha = O\left(\frac{\sqrt{\log|\mathcal{X}| \cdot \log(1/\delta)} \log|\mathcal{Q}|}{\varepsilon n}\right)^{1/2}$$

Accuracy Theorem: SmallDB achieves max-error: $\alpha = O \left(\frac{\log |\mathfrak{Q}| \log |\mathfrak{X}|}{\varepsilon n} \right)^{1/3}.$

MWEM

Keep a distribution over the databases, and search for a query which maximize the error, to be used in the update rule.

Distribution

Search space

 $\{Q_{1},...,Q_{n}\}$

25

A dual approach

Keep a distribution over the queries, and search for a record which maximize the error, to be used in the update rule.

Distribution

Search space

Distribution over queries²⁷

In general we want to consider a set Q of queries q_1, \ldots, q_k closed under negation.

We denote by Q₀ the uniform distribution over Q:

Q ₁	1/ Q				1/ Q					
----------------	------	------	------	------	------	------	--	--	--	------

DualQuery

Algorithm 11 Pseudo-code for DualQuery

1: function DUALQUERY $(D, Q, C, s, \alpha, Q_0)$

2: for
$$i \leftarrow 1, \ldots, C$$
 do

3: Sample s queries q_1^s, \ldots, q_s^s from Q

4: Find x_i such that

5:
$$\left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \ge \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4$$

6:
$$Q_i(q) = Q_{i-1}(q) \times \exp\left(-\alpha\left(\frac{q(x_i) - q(D)}{2n}\right)\right)$$

7:
$$Q_i = \operatorname{renormalize}(Q_i)$$

8: end for

9: **return**
$$\bigcup_{i < C} x_i$$

10: end function

DualQuery - Privacy

DualQuery revisited

Algorithm 11 Pseudo-code for DualQuery 1: function DUALQUERY $(D, Q, T, s, \alpha, Q_1)$ The privacy Sample s queries q_1^s, \ldots, q_s^s from Q 2:proof 3: Find x_1 such that $\left(\frac{1}{s}\sum_{j} q_{j}^{s}(x_{1})\right) \ge \left(\max_{x} \frac{1}{s}\sum_{j} q_{j}^{s}(x)\right) - \alpha/4$ follows by 4: for $i \leftarrow 2, \ldots, T$ do composition 5: $u_i(D,q) = \sum_{j=1}^{i-1} q(x_j) - q(D)$ 6: Sample *s* queries q_1^s, \ldots, q_s^s as $q_k^s \leftarrow \mathsf{ExpMech}(D, u_i, \frac{\alpha(i-1)}{n})$ 7: 8: Find x_i such that 9: $\left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \geq \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4$ 10: end for 11: return $\bigcup_{i < T} x_i$ 12:13: end function

DualQuery - Accuracy

Accuracy Theorem: DualQuery achieves max-error:

$$\alpha = O\left(\frac{\log^{1/2} \mathcal{Q} |\log^{1/6}(1/\delta) \log^{1/6}(2|\mathcal{X}|/\gamma)}{n^{1/3} \varepsilon^{1/3}}\right)$$

Accuracy Theorem: SmallDB achieves max-error:

$$\alpha = O\left(\frac{\log|\mathcal{Q}|\log|\mathcal{X}|}{\varepsilon n}\right)^{1/3}$$

Accuracy Theorem: MWEM achieves max-error:

$$\alpha = O\left(\frac{\sqrt{\log |\mathcal{X}| \cdot \log(1/\delta)} \cdot \log |\mathcal{Q}|}{\varepsilon n}\right)^{1/2}.$$

DualQuery novelty?

	Algorithm 11 Pseudo-code for DualQuery							
Themest	1: function DUALQUERY $(D, Q, T, s, \alpha, Q_1)$							
ine most	2: Sample s queries q_1^s, \ldots, q_s^s from Q							
expensive	3: Find x_1 such that							
task is	4: $\left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{1})\right) \ge \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4$							
non-private	5: $\mathbf{for} i \leftarrow 2, \dots, T \mathbf{do}$							
	6: $u_i(D,q) = \sum_j^{i-1} q(x_j) - q(D)$							
	7: Sample s queries q_1^s, \ldots, q_s^s as							
	8: $q_k^s \leftarrow ExpMech(D, u_i, \frac{\alpha(i-1)}{n})$							
we can use	9: Find x_i such that							
standard	0: $\left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \ge \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4$							
optimization	1: end for							
tools	2: return $\bigcup_{i \leq T} x_i$							
10010	3: end function							

Example k-way marginals ³³

Let's consider the universe domain $\mathcal{X} = \{0, 1\}^d$ and let's consider $\vec{v} \in \{1, \overline{1}, \dots, d, \vec{d}\}^k$ with $1 \leq k \leq d$ and

$$q_{\vec{v}}(x) = q_{v_1}(x) \land q_{v_1}(x) \land \dots \land q_{v_k}(x)$$

where $q_j(x) = x_j$ and $q_{\overline{j}}(x) = \neg x_j$

We call a conjunction or k-way marginal the associated counting query $q_{\vec{v}}: \mathcal{X}^n \to [0, 1]$

We can create a corresponding integer program problem.

Example 3-way marginals

$$\max\sum_{i} c_i + \sum_{j} d_j$$

with
$$\forall \hat{u_i} = q_{abc} : x_a + x_b + x_c \ge 3c_i$$

 $\forall \hat{v_j} = \overline{q_{abc}} : (1 - x_a) + (1 - x_b) + (1 - x_c) \ge d_j$
 $x_i, c_i, d_i \in \{0, 1\}$