CSE660

Differential Privacy

 October 16, 2017
Marco Gaboardi
 Room: 338-B

 gaboardi@buffalo.edu http://www.buffalo.edu/~gaboardi
(ε, δ)-Differential Privacy

Definition

Given $\varepsilon, \delta \geq 0$, a probabilistic query $Q: X^{n} \rightarrow R$ is (ε, δ)-differentially private iff
for all adjacent database b_{1}, b_{2} and for every $S \subseteq R$:

$$
\operatorname{Pr}\left[Q\left(b_{1}\right) \in S\right] \leq \exp (\varepsilon) \operatorname{Pr}\left[Q\left(b_{2}\right) \in S\right]+\delta
$$

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

Using standard composition we have as a max error

$$
O\left(\frac{n}{\epsilon_{\text {global }} n}\right)=O\left(\frac{1}{\epsilon_{\text {global }}}\right)
$$

Notice that if we don't renormalize this is of the order of

$$
O\left(\frac{n}{\epsilon_{\text {global }}}\right)
$$

bigger than the sample error.

Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ε, δ)-DP?

Using advanced composition we have as a max error

$$
O\left(\frac{1}{\epsilon_{\text {global }} \sqrt{n}}\right)
$$

If we don't renormalize this is of the order of

$$
O\left(\frac{\sqrt{n}}{\epsilon_{\text {global }}}\right)
$$

comparable to the sample error.
[DworkRothblumVadhan I 0, SteinkeUllman I 6]

Answering multiple queries ${ }^{6}$

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition - we can answer $\sqrt{ }$ n queries.
- Advanced composition - we can answer n queries.

Question: Can we do better?

SmallDB:Answering

 multiple linear queries

 multiple linear queries}

Algorithm 5 Pseudo-code for SmallDB
1: function $\operatorname{SmalLDB}(D, Q, \epsilon, \alpha)$
2: \quad Let $m=\frac{\log |Q|}{\alpha^{2}}$
3: \quad Let $u: \mathcal{X}^{n} \times \mathcal{X}^{m} \rightarrow \mathbb{R}$ be defined as:

$$
u\left(D, D_{i}\right)=-\max _{q \in Q}\left|q(D)-q\left(D_{i}\right)\right|
$$

4: \quad Let $D^{\prime} \leftarrow \mathcal{M}_{E}(D, u, \epsilon)$
5: return D^{\prime}
6: end function

SmallDB:Answering multiple linear queries

Equivalently, for any database x with

$$
\|x\|_{1} \geq \frac{16 \log |\mathcal{X} \log | \mathcal{Q} \left\lvert\,+4 \log \left(\frac{1}{\beta}\right)\right.}{\varepsilon \alpha^{3}}
$$

with probability $1-\beta: \max _{f \in \mathcal{Q}}|f(x)-f(y)| \leq \alpha$.

Answering multiple queries'

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition - we can answer $\sqrt{ }$ n queries.
- Advanced composition - we can answer n queries.

If we allow coordinating noise among different queries we can answer an exponential number of queries.

Data Release: IDC

Data Release: IDC

$\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{n}}\right\}$

Data Release: IDC

$\left\{Q_{1}, \ldots, Q_{n}\right\}$
\checkmark

Iterative Database

 Construction target accuracy α it generates a sequence D_{1}, \ldots, D_{n} of synthetic DBs such that:

- it gives increasingly better approximations of D,
- D_{t+1} is generated by D_{t} using only one query Q_{t} maximizing the difference:

$$
\left|Q_{t}(D)-Q_{t}\left(D_{t}\right)\right| \geqq k
$$

- D_{n} satisfies the target accuracy α.

Private Data Release

 $\left\{Q_{1}, \ldots, Q_{n}\right\}$

Private Iterative

Database Construction

Given a database D , a set of queries $\left\{\mathrm{Q}_{\mid}, \ldots, \mathrm{Q}_{\mathrm{n}}\right\}$ and a target accuracy α it generates a sequence $D_{1, \ldots,} D_{n}$ of synthetic DBs such that:

- it gives increasingly better approximations of D,
- D_{t+1} is privately generated by D_{t} using only one query $Q_{t}=Q_{t}+$ noise maximizing the difference:

$$
\left|Q_{t}(D)-Q_{t}\left(D_{t}\right)\right| \geqq k
$$

- D_{n} satisfies the target accuracy α.

MWEM

Multiplicative Weight Exponential Mechanism

An algorithm for IDC for linear queries based on:

- the Exponential mechanism to select the query maximizing the difference,
- the Multiplicative Weight update rule to update the database.

Dataset as a distribution 17 over the universe

The algorithm views a dataset D as a distribution over rows $x \in \mathcal{X}$.

$$
D(x)=\frac{\#\left\{i \in[n]: d_{i}=x\right\}}{n}
$$

Then,

$$
q(D)=\mathbb{E}_{x \rightarrow D}[q(x)]
$$

We denote by D_{0} the uniform distribution over \mathcal{X}.

| $1 / n$ | $\ldots .$. | $\ldots .$. | $\ldots .$. | $1 / n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Update part using the MW algorithm
Algorithm 9 Pseudo-code for MWEM and a threshold 1: function $\operatorname{MWEM}\left(D, q_{1}, \ldots, q_{m}, T, \epsilon, D_{0}\right)$ obtained with
2: \quad for $i \leftarrow 1, \ldots, T$ do
Laplace.

$$
\begin{aligned}
& \begin{array}{l}
u_{i}(D, q)=\left|q\left(D_{i-1}\right)-q(D)\right| \\
\hat{q} \leftarrow \operatorname{Exp} \operatorname{Mech}\left(D, u_{i}, n \epsilon / 2 T\right)
\end{array} \\
& m_{i} \leftarrow \hat{q}(D)+\operatorname{Lap}(T / n \epsilon) \\
& \begin{array}{l}
D_{i}(x)=D_{i-1}(x) \times \exp \left(\hat{q}(x)^{\left.\frac{(m-q}{}\left(D_{i-1}\right)\right)}\right. \\
D_{i}=\operatorname{renormalize}\left(D_{i}\right)
\end{array}
\end{aligned}
$$

end for
9: return $\operatorname{avg}_{i<T} D_{i}$
10: end function
$D_{i}(x)=D_{i-1}(x) \times \exp \left(q(x) \frac{\left(q(D)-q\left(D_{i-1}\right)\right)}{2 n}\right)$

For a given query q:

- If $q(D) \gg q\left(D_{i-1}\right)$, we should scale up the weights on records contributing positively, and scale down the ones contributing negatively,
- If $\mathrm{q}(\mathrm{D}) \ll \mathrm{q}\left(\mathrm{D}_{\mathrm{i}-1}\right)$, we should scale down the weights on records contributing positively, and scale up the ones contributing negatively.

MW Intuition

Let's consider counting queries.

Do

| $1 / n$ | $\ldots .$. | $\ldots .$. | $\ldots .$. | $1 / n$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0	1	\uparrow	0	1	0	$\ldots \ldots$	$\ldots .$.	$\ldots .$.	\uparrow
\downarrow	\uparrow	\uparrow	\downarrow	\uparrow	\downarrow	\ldots	\ldots	\ldots	\uparrow

D_{1}

$e^{1 / 2 n / n}$

Let's assume $\quad \hat{q}_{1}(D)-\hat{q}\left(D_{0}\right)=1 \quad$ then $\quad D_{1}\left(x_{j}\right)=D_{0}\left(x_{j}\right) \times \exp \left(\frac{q_{1}\left(x_{j}\right)}{2 n}\right)$

Let's consider counting queries.

Let's assume $\hat{q}_{1}(D)-\hat{q}\left(D_{0}\right)=-1 \quad$ then $D_{1}\left(x_{j}\right)=D_{0}\left(x_{j}\right) \times \exp \left(\frac{-q_{1}\left(x_{j}\right)}{2 n}\right)$

Algorithm 9 Pseudo-code for MWEM
1: function $\operatorname{MWEM}\left(D, q_{1}, \ldots, q_{m}, T, \epsilon, D_{0}\right)$
2: \quad for $i \leftarrow 1, \ldots, T$ do
3: $\quad u_{i}(D, q)=\left|q\left(D_{i-1}\right)-q(D)\right|$
4: $\quad \hat{q} \leftarrow \operatorname{Exp} \operatorname{Mech}\left(D, u_{i}, n \epsilon / 2 T\right)$
5: $\quad m_{i} \leftarrow \hat{q}(D)+\operatorname{Lap}(T / n \epsilon)$
6: $\quad D_{i}(x)=D_{i-1}(x) \times \exp \left(\hat{q}(x) \frac{\left(m-\hat{q}\left(D_{i-1}\right)\right)}{2}\right)$
7: $\quad D_{i}=$ renormalize $\left(D_{i}\right)$
8: \quad end for
9: return $\operatorname{avg}_{i<T} D_{i}$
10: end function

MWEM - Privacy

Theorem 1.13. MWEM satisfies ϵ-differnetial privacy.

MWEM

Accuracy Theorem: MWEM achieves max-error:

$$
\alpha=O\left(\frac{\sqrt{\log |X| \cdot \log (1 / \delta)} \log |\mathbb{Q}|}{\varepsilon n}\right)^{1 / 2} .
$$

Accuracy Theorem: SmallDB achieves max-error:

$$
\alpha=O\left(\frac{\log |Q| \log |X|}{\varepsilon n}\right)^{1 / 3}
$$

MWEM

Keep a distribution over the databases, and search for a query which maximize the error, to be used in the update rule.

Distribution

Search space

$\left\{Q_{1}, \ldots, Q_{n}\right\}$

A dual approach

Keep a distribution over the queries, and search for a record which maximize the error, to be used in the update rule.

Distribution

Search space

Distribution over queries

In general we want to consider a set Q of queries q_{1}, \ldots, q_{k} closed under negation.

We denote by Q_{0} the uniform distribution over Q :
Q_{1}

DualQuery

```
Algorithm 11 Pseudo-code for DualQuery
    1: function \(\operatorname{DualQuery}\left(D, Q, C, s, \alpha, Q_{0}\right)\)
    2: \(\quad\) for \(i \leftarrow 1, \ldots, C\) do
    3: \(\quad\) Sample \(s\) queries \(q_{1}^{s}, \ldots, q_{s}^{s}\) from \(Q\)
    4: \(\quad\) Find \(x_{i}\) such that
    5: \(\quad\left(\frac{1}{s} \sum_{j} q_{j}^{s}\left(x_{i}\right)\right) \geq\left(\max _{x} \frac{1}{s} \sum_{j} q_{j}^{s}(x)\right)-\alpha / 4\)
    6:
        \(Q_{i}(q)=Q_{i-1}(q) \times \exp \left(-\alpha\left(\frac{\left.q\left(x_{i}\right)-q(D)\right)}{2 n}\right)\right.\)
    7: \(\quad Q_{i}=\) renormalize \(\left(Q_{i}\right)\)
    8: \(\quad\) end for
    9: return \(\bigcup_{i<C} x_{i}\)
10: end function
```


DualQuery - Privacy

Theorem 1.15. DualQuery is differentially private for:

$$
\epsilon=\frac{\alpha T(T-1) s}{4 n}
$$

DualQuery revisited

Algorithm 11 Pseudo-code for DualQuery

The privacy proof follows by composition	1: function $\operatorname{DualQuery}\left(D, Q, T, s, \alpha, Q_{1}\right)$
	Sample s queries $q_{1}^{s}, \ldots, q_{s}^{s}$ from Q
	Find x_{1} such that
	4: $\quad\left(\frac{1}{s} \sum_{j} q_{j}^{s}\left(x_{1}\right)\right) \geq\left(\max _{x} \frac{1}{s} \sum_{j} q_{j}^{s}(x)\right)-\alpha / 4$
	for $i \leftarrow 2, \ldots, T$ do
	6: $\quad u_{i}(D, q)=\sum_{j}^{i-1} q\left(x_{j}\right)-q(D)$
	Sample s queries $q_{1}^{s}, \ldots, q_{s}^{s}$ as
	$q_{k}^{s} \leftarrow \operatorname{ExpMech}\left(D, u_{i}, \frac{\alpha(i-1)}{n}\right)$
	9: Find x_{i} such that
	10: $\quad\left(\frac{1}{s} \sum_{j} q_{j}^{s}\left(x_{i}\right)\right) \geq\left(\max _{x} \frac{1}{s} \sum_{j} q_{j}^{s}(x)\right)-\alpha / 4$
	11: end for
	12: return $\bigcup_{i \leq T} x_{i}$
	13: end function

DualQuery - Accuracy

Accuracy Theorem: DualQuery achieves max-error:

$$
\alpha=O\left(\frac{\log ^{1 / 2} \mathcal{Q} \mid \log ^{1 / 6}(1 / \delta) \log ^{1 / 6}(2|\mathcal{X}| / \gamma)}{n^{1 / 3} g^{1 / 3}}\right)
$$

Accuracy Theorem: SmallDB achieves max-error:

$$
\alpha=O\left(\frac{\log |Q| \log |X|}{\square \varepsilon n}\right)^{1 / 3} .
$$

Accuracy Theorem: MWEM achieves max-error:

$$
\alpha=O\left(\frac{\sqrt{\log |X| \cdot \log (1 / \delta)}}{\varepsilon_{\varepsilon n}} \operatorname{log|Q|}\right)^{1 / 2} .
$$

DualQuery novelty?

Algorithm 11 Pseudo-code for DualQuery

The most expensive task is

 non-private1: function $\operatorname{DuALQuEry}\left(D, Q, T, s, \alpha, Q_{1}\right)$
2: \quad Sample s queries $q_{1}^{s}, \ldots, q_{s}^{s}$ from Q
3: \quad Find x_{1} such that

$$
\left(\frac{1}{s} \sum_{j} q_{j}^{s}\left(x_{1}\right)\right) \geq\left(\max _{x} \frac{1}{s} \sum_{j} q_{j}^{s}(x)\right)-\alpha / 4
$$

5: \quad for $i \leftarrow 2, \ldots, T$ do
6: $\quad u_{i}(D, q)=\sum_{j}^{i-1} q\left(x_{j}\right)-q(D)$
7: \quad Sample s queries $q_{1}^{s}, \ldots, q_{s}^{s}$ as $q_{k}^{s} \leftarrow \operatorname{ExpMech}\left(D, u_{i}, \frac{\alpha(i-1)}{n}\right)$
Find x_{i} such that

$$
\left(\frac{1}{s} \sum_{j} q_{j}^{s}\left(x_{i}\right)\right) \geq\left(\max _{x} \frac{1}{s} \sum_{j} q_{j}^{s}(x)\right)-\alpha / 4
$$

end for
return $\bigcup_{i \leq T} x_{i}$
end function

Example k-way marginals 33

Let's consider the universe domain $\mathcal{X}=\{0,1\}^{d}$ and let's consider $\vec{v} \in\{1, \overline{1}, \ldots, d, \vec{d}\}^{k}$ with $1 \leq k \leq d$ and

$$
q_{\vec{v}}(x)=q_{v_{1}}(x) \wedge q_{v_{1}}(x) \wedge \cdots \wedge q_{v_{k}}(x)
$$

where $q_{j}(x)=x_{j}$ and $q_{j}^{-}(x)=\neg x_{j}$
We call a conjunction or k-way marginal the associated counting query

$$
q_{\vec{v}}: \mathcal{X}^{n} \rightarrow[0,1]
$$

Example 3-way marginals

with $\forall \widehat{u_{i}}=q_{a b c}: x_{a}+x_{b}+x_{c} \geq 3 c_{i}$

$$
\begin{aligned}
& \forall \widehat{v_{j}}=\overline{q_{a b c}}:\left(1-x_{a}\right)+\left(1-x_{b}\right)+\left(1-x_{c}\right) \geq d_{j} \\
& x_{i}, c_{i}, d_{i} \in\{0,1\}
\end{aligned}
$$

