
Marco Gaboardi
Room: 338-B  

gaboardi@buffalo.edu 
http://www.buffalo.edu/~gaboardi

CSE660  
Differential Privacy

October 16, 2017  

1

(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is
(ε,δ)-differentially private iff
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

3

Question: how much perturbation do we have if we want
to answer n counting queries with Laplace under ε-DP?

Multiple queries

4

Using standard composition we have as a max error

O
⇣ n

✏
global

n

⌘
= O

⇣ 1

✏
global

⌘

Notice that if we don’t renormalize this is of the order of
O
⇣ n

✏
global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.

Multiple queries
Question: how much perturbation do we have if we want
to answer n counting queries with Laplace under ε-DP?

If we don’t renormalize this is of the order of

comparable to the sample error.
O
⇣ p

n

✏
global

⌘

5
Advanced Composition

Using advanced composition we have as a max error

Question: how much perturbation do we have if
we want to answer n queries under (ε,δ)-DP?

O
⇣ 1

✏
global

p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]

6
Answering multiple queries
We have seen several methods to answer a single query:
- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer √n queries.
- Advanced composition - we can answer n queries.

Question: Can we do better?

7SmallDB: Answering
multiple linear queries

1.12. Example: releasing an approximate Cumulative Distribution
Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–

2

3: Let u : X n ◊ X m æ R be defined as:

u(D, D
i

) = ≠ max
qœQ

|q(D) ≠ q(D
i

)|

4: Let DÕ Ω M
E

(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , z

k

3: S0 Ω 0
4: for i Ω 1, . . . , k do

5: S
i

Ω S
i≠1 + LapMech(q[y], ‘

l

, D
i

)
6: end for

7: return S

8: end function

8SmallDB: Answering
multiple linear queries

4.1. An offline algorithm: SmallDB 283

Finally, we may now state the utility theorem for SmallDB.

Theorem 4.5. By the appropriate choice of α, letting y be the database
output by SmallDB(x, Q, ε, α

2), we can ensure that with probability
1 − β:

max
f∈Q

|f(x) − f(y)| ≤

⎛

⎝
16 log |X | log |Q| + 4 log

(
1
β

)

ε∥x∥1

⎞

⎠
1/3

. (4.2)

Equivalently, for any database x with

∥x∥1 ≥
16 log |X | log |Q| + 4 log

(
1
β

)

εα3 (4.3)

with probability 1 − β: maxf∈Q |f(x) − f(y)| ≤ α.

Proof. By Theorem 4.2, we get:

max
f∈Q

|f(x) − f(y)| ≤ α

2 +
2

(
4 log |X | log |Q|

α2 + log
(

1
β

))

ε∥x∥1
.

Setting this quantity to be at most α and solving for ∥x∥1 yields (4.3).
Solving for α yields (4.4).

Note that this theorem states that for fixed α and ε, even with
δ = 0, it is possible to answer almost exponentially many queries in the
size of the database.2 This is in contrast to the Laplace mechanism,
when we use it directly to answer linear queries, which can only answer
linearly many.

Note also that in this discussion, it has been most convenient to
think about normalized queries. However, we can get the corresponding
bounds for unnormalized queries simply by multiplying by ∥x∥1:

Theorem 4.6 (Accuracy theorem for un-normalized queries). By the
appropriate choice of α, letting y be the database output by

2Specifically, solving for k we find that the mechanism can answer k queries for:

k ≤ exp
(

O

(
α3ϵ∥x∥1
log |X |

))
.

9
Answering multiple queries
We have seen several methods to answer a single query:
- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer √n queries.
- Advanced composition - we can answer n queries.

If we allow coordinating noise among different queries we
can answer an exponential number of queries.

Data Release: IDC

Data Release: IDC
{Q1,...,Qn}

Data Release: IDC
{Q1,...,Qn}

Iterative Database
Construction

Given a database D, a set of queries {Q1,...,Qn} and a
target accuracy α it generates a sequence D1,...,Dn
of synthetic DBs such that:

• it gives increasingly better approximations of D,

• Dt+1 is generated by Dt using only one query Qt
maximizing the difference:

• Dn satisfies the target accuracy α.

| Qt(D) - Qt(Dt) | ≧ k

Private Data Release
{Q1,...,Qn}Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

Private Iterative
Database Construction

Given a database D, a set of queries {Q1,...,Qn} and a
target accuracy α it generates a sequence D1,...,Dn
of synthetic DBs such that:

• it gives increasingly better approximations of D,

• Dt+1 is privately generated by Dt using only one
query Qt = Qt+noise maximizing the difference:

• Dn satisfies the target accuracy α.

| Qt(D) - Qt(Dt) | ≧ k

MWEM
Multiplicative Weight Exponential Mechanism

An algorithm for IDC for linear queries based on:  
- the Exponential mechanism to select the query
maximizing the difference,  
- the Multiplicative Weight update rule to update
the database.

17Dataset as a distribution
over the universe

28 Di�erential Privacy

Proof. Fix D ≥ DÕ, and c = ˛q(D) and cÕ = ˛q(DÕ) be the results of the
counting queries in the two cases. For simplicity we assume that c and
cÕ have the following properties.

• i) ’j, c
j

Ø cÕ
j

• ii) ’j, 1
n

+ cÕ
j

Ø c
j

The general case is a little more involved but overall similar.
Let’s now fix i, we want to bound the ratio of the probability that i

is selected when running RNM on D and DÕ. Now let r
j

be the noise
drawn from Laplace for the round j and r≠i

be the noise drawn from
Laplace for all the rounds except the i-th one.

The algorithm views a dataset D as a distribution over rows x œ X .

D(x) = #{i œ [n] : d
i

= x}
n

Then,
q(D) = E

xæD

[q(x)]

We denote by D0 the uniform distribution over X .

Algorithm 9 Pseudo-code for MWEM
1: function MWEM(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: h
i

Ω LapMech(D, q
i

, ‘)
4: end for

5: return argmax
i

h
i

6: end function

1/n 1/n 1/n 1/n 1/n 1/n ….. ….. ….. 1/nD0

18
MWEM Select the query

with the
exponential
Mechanism

Update part
using the MW

algorithm  
and a threshold
obtained with

Laplace.

28 Di�erential Privacy

Proof. Fix D ≥ DÕ, and c = ˛q(D) and cÕ = ˛q(DÕ) be the results of the
counting queries in the two cases. For simplicity we assume that c and
cÕ have the following properties.

• i) ’j, c
j

Ø cÕ
j

• ii) ’j, 1
n

+ cÕ
j

Ø c
j

The general case is a little more involved but overall similar.
Let’s now fix i, we want to bound the ratio of the probability that i

is selected when running RNM on D and DÕ. Now let r
j

be the noise
drawn from Laplace for the round j and r≠i

be the noise drawn from
Laplace for all the rounds except the i-th one.

The algorithm views a dataset D as a distribution over rows x œ X .

D(x) = #{i œ [n] : d
i

= x}
n

Then,
q(D) = E

xæD

[q(x)]
We denote by D0 the uniform distribution over X .

Algorithm 9 Pseudo-code for MWEM
1: function MWEM(D, q1, . . . , q

m

, T , ‘, D0)
2: for i Ω 1, . . . , T do

3: u
i

(D, q) = |q(D
i≠1) ≠ q(D)|

4: q̂ Ω ExpMech(D, u
i

, n‘/2T)
5: m

i

Ω q̂(D) + Lap(T/n‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q̂(x) (m≠q̂(Di≠1))

2)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<T

D
i

10: end function

Theorem 1.13. MWEM satisfies ‘-di�ernetial privacy.
Theorem 1.14. For any database D, set of linear queries Q, T œ N,
and ‘ > 0, if D̂ = MWEM(D, Q, T, ‘), then

Pr
Ë

max
qœQ

|q(D̂) ≠ q(D)| > 2

Û
log(|X |)

T
+ 10T log(|Q|)

‘

È
Æ 2T

|Q|

For a given query q:

• If q(D)>>q(Di-1), we should scale up the weights on
records contributing positively, and scale down the
ones contributing negatively,

• If q(D)<<q(Di-1), we should scale down the weights
on records contributing positively, and scale up the
ones contributing negatively.

19
MW Intuition

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

20

1/n 1/n 1/n 1/n 1/n 1/n ….. ….. ….. 1/nD0

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

Let’s assume

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = 1

Let’s consider counting queries.

then

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = 1
D1(x

j

) = D0(x
j

) ◊ exp(q1(xj)
2n

)

0 1 1 0 1 0 ….. ….. ….. 1

↓ ↑ ↑ ↓ ↑ ↓ ….
.

….
.

….
.
↑

1/n e1/2n/n e1/2n/n 1/n e1/2n/n 1/n ….. ….. ….. e1/2n/nD1

MW Intuition

21

1/n 1/n 1/n 1/n 1/n 1/n ….. ….. ….. 1/nD0

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

Let’s assume

Let’s consider counting queries.

then

0 1 1 0 1 0 ….. ….. ….. 1

↑ ↓ ↓ ↑ ↓ ↑ ….
.

….
.

….
.
↓

1/n 1/e1/2nn 1/e1/2nn 1/n 1/e1/2nn 1/n ….. ….. ….. 1/e1/2nnD1

MW Intuition

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(q1(xj)
2n

)

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for MWEM
1: function DualQuery(D, q1, . . . , q

m

, C, ‘)
2: for i Ω 1, . . . , T do

3: u1(D, q) = |q(D0) ≠ q(D)|
4: q̂ Ω ExpMech(D, u1, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (q(D)≠q(Di≠1))

2n

)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(≠q1(xj)
2n

)

22
MWEM

28 Di�erential Privacy

Proof. Fix D ≥ DÕ, and c = ˛q(D) and cÕ = ˛q(DÕ) be the results of the
counting queries in the two cases. For simplicity we assume that c and
cÕ have the following properties.

• i) ’j, c
j

Ø cÕ
j

• ii) ’j, 1
n

+ cÕ
j

Ø c
j

The general case is a little more involved but overall similar.
Let’s now fix i, we want to bound the ratio of the probability that i

is selected when running RNM on D and DÕ. Now let r
j

be the noise
drawn from Laplace for the round j and r≠i

be the noise drawn from
Laplace for all the rounds except the i-th one.

The algorithm views a dataset D as a distribution over rows x œ X .

D(x) = #{i œ [n] : d
i

= x}
n

Then,
q(D) = E

xæD

[q(x)]
We denote by D0 the uniform distribution over X .

Algorithm 9 Pseudo-code for MWEM
1: function MWEM(D, q1, . . . , q

m

, T , ‘, D0)
2: for i Ω 1, . . . , T do

3: u
i

(D, q) = |q(D
i≠1) ≠ q(D)|

4: q̂ Ω ExpMech(D, u
i

, n‘/2T)
5: m

i

Ω q̂(D) + Lap(T/n‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q̂(x) (m≠q̂(Di≠1))

2)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<T

D
i

10: end function

Theorem 1.13. MWEM satisfies ‘-di�ernetial privacy.
Theorem 1.14. For any database D, set of linear queries Q, T œ N,
and ‘ > 0, if D̂ = MWEM(D, Q, T, ‘), then

Pr
Ë

max
qœQ

|q(D̂) ≠ q(D)| > 2

Û
log(|X |)

T
+ 10T log(|Q|)

‘

È
Æ 2T

|Q|

23
MWEM - Privacy

28 Di�erential Privacy

Proof. Fix D ≥ DÕ, and c = ˛q(D) and cÕ = ˛q(DÕ) be the results of the
counting queries in the two cases. For simplicity we assume that c and
cÕ have the following properties.

• i) ’j, c
j

Ø cÕ
j

• ii) ’j, 1
n

+ cÕ
j

Ø c
j

The general case is a little more involved but overall similar.
Let’s now fix i, we want to bound the ratio of the probability that i

is selected when running RNM on D and DÕ. Now let r
j

be the noise
drawn from Laplace for the round j and r≠i

be the noise drawn from
Laplace for all the rounds except the i-th one.

The algorithm views a dataset D as a distribution over rows x œ X .

D(x) = #{i œ [n] : d
i

= x}
n

Then,
q(D) = E

xæD

[q(x)]
We denote by D0 the uniform distribution over X .

Algorithm 9 Pseudo-code for MWEM
1: function MWEM(D, q1, . . . , q

m

, C, ‘, D0)
2: for i Ω 1, . . . , T do

3: u
i

(D, q) = |q(D
i≠1) ≠ q(D)|

4: q̂ Ω ExpMech(D, u, ‘/2C)
5: m

i

Ω q̂(D) + Lap(2C/‘)
6: D

i

(x) = D
i≠1(x) ◊ exp(q(x) (m≠q(Di≠1))

2)
7: D

i

= renormalize(D
i

)
8: end for

9: return avg
i<C

D
i

10: end function

Theorem 1.13. MWEM satisfies ‘-di�ernetial privacy.
Theorem 1.14. For any database D, set of linear queries Q, C œ N,
and ‘ > 0, if D̂ = MWEM(D, Q, C, ‘), then

Pr
Ë

max
qœQ

|q(D̂) ≠ q(D)| > 2

Û
log(|X |)

C
+ 10C log(|Q|)

‘

È
Æ 2C

|Q|

24
MWEM

Similarly to the proof of Theorem 4.1, it can be shown that:

Proposition 4.2 (the exponential mechanism, due to McSherry and Talwar [78]). For every func-
tion score : Xn ⇥ Y ! R such that Y is finite, " � 0, and B > 0,

1. If B � maxz GS
score(·,z), then the mechanism M

score,B is 2"-di↵erentially private, and

2. For every dataset x 2 Xn, with high probability M
score,B(x) outputs y such that

score(x, y) � argmaxy⇤ score(x, y
⇤)�O(log |Y|) ·B/".

The downside. While the exponential mechanism is very powerful, it can be computationally
very expensive, as a direct implementation requires enumerating over all y 2 Y. Indeed, in the
application of Theorem 4.1, the computation time is roughly

|Y| = |X|m = exp

✓

log |Q| log |X|
↵2

◆

,

so it is very slow. For example, we get runtime exp(d2/↵2) for the query family Qconj of conjunctions
on {0, 1}d.

4.2 Private Multiplicative Weights

We now present the state-of-art algorithm for general queries:

Theorem 4.3 (private multiplicative weights, due to Hardt and Rothblum [57]). For every set
Q of counting queries on a data universe X and every ", � > 0, there exists an (", �)-di↵erentially
private mechanism M such that for all datasets x 2 Xn, with high probability M(x) answers all
queries in Q to within error at most

↵ = O

p

log |X| · log(1/�) · log |Q|
"n

!

1/2

.

Moreover, M(x) can answer the queries in an on-line fashion (answering each query as it arrives)
and runs in time poly(n, |X|) per query.

The algorithm can also be modified to produce a synthetic dataset, though we won’t show it
here.

Note that the error vanishes more quickly with n than in Theorem 4.1 (as 1/n1/2 rather than
1/n1/3), and the log |X| has been replaced by

p

log |X| · log(1/�). Comparing to the results we have
seen for our example query families, we have:

For Qconj and Q
conj

t , we obtain a savings in the dependence on |X| = 2d. In particular, for answer-
ing all conjunctions on {0, 1}d with error tending to zero, we only need n = !(d3/2 ·

p

log(1/�)/")
rather than n = !(d2/") as in Theorem 4.1. The running time has improved, too, but is still at
least |X| · |Q|, which is exponential in d. (Of course, in this generality, one needs |X| · |Q| bits to
specify an arbitrary set of counting queries on {0, 1}d.)

29

Accuracy Theorem: MWEM achieves max-error:

Accuracy Theorem: SmallDB achieves max-error:

This, in turn, is no more than the maximum degree of G. In contrast the global sensitivity is
GSq� = n � 2. However, if we consider the global sensitivity of the local sensitivity, we have
GS

LS

q�
= 1. (If we think of the local sensitivity as a discrete analogue of a derivative, then this is

the analogue of having a bounded second derivative, despite the derivative sometimes being large.)
Consider the following mechanism M(G):

• Compute �̂ = LSq�(G) + Lap(1/") + ln(1/�)/".

• Output q
�

(G) + Lap(�̂/").

This mechanism can be shown to be (2", �)-di↵erentially private, and the total noise is of
magnitude:

O

✓

LSq�(G) + (1 + log(1/�))/"

"

◆

.

Note that this approach is computationally e�cient if we can e�ciently evaluate the query q,
can e�ciently calculate LSq (which requires at most |X| evaluations of q), and and have an upper
bound on GS

LS

q

.

4 Releasing Many Counting Queries with Correlated Noise

We have seen (in Thms. 2.6, 2.7, and 2.9) that any set Q of counting queries over data universe X

can be answered with di↵erential privacy and an error of at most:

↵ O

min

(

|Q|
"n

,

p

|Q| · log(1/�) · log log |Q|
"n

,

p

|X| · log |Q|
"n

)!

on each of the queries (with high probability). When both |Q| and |X| are larger than n2, the
amount of error is larger than 1, and hence these approaches provide nothing useful (recall that
the true answers lie in [0, 1]).

In this section, we will see two methods that can answer many more than n2 counting queries
on a data universe of size much larger than n2. Both use ideas from Learning Theory.

4.1 The SmallDB Algorithm

Theorem 4.1 (the SmallDB algorithm, due to Blum et al. [14]). For every set Q of counting
queries on a data universe X and every " > 0, there exists an "-di↵erentially private mechanism
M such that for all datasets x 2 Xn, with high probability M(x) answers all queries in Q to within
error at most

↵ = O

✓

log |Q| log |X|
"n

◆

1/3

.

Moreover, M(x) outputs a “synthetic dataset” y 2 Xm with m = O(log |Q|/↵2) such that with high
probability, we have |q(y)� q(x)| ↵ for all q 2 Q, i.e., we can calculate all the answers using the
(smaller) synthetic dataset.

In fact, the bounds can be improved to ↵ = Õ(VC(Q) · log |X|/"n)1/3 and m = VC(Q) · Õ(1/↵2),
where VC(Q) is the Vapnik-Chervonenkis dimension of the class Q.5

5VC(Q) is defined to be the largest number k such that there exist x1, . . . , x
k

2 X for which {(q(x1), . . . , q(x
k

)) :
q 2 Q} = {0, 1}k. Clearly, VC(Q) log |Q|.

26

25
MWEM

Keep a distribution over the databases, and search
for a query which maximize the error, to be used in
the update rule.

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

{Q1,...,Qn}

Search spaceDistribution

26
A dual approach

Keep a distribution over the queries, and search for
a record which maximize the error, to be used in
the update rule.

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

{Q1,...,Qn}

Search spaceDistribution

27
Distribution over queries

1/|Q| 1/|Q| 1/|Q| 1/|Q| 1/|Q| 1/|Q| ….. ….. ….. 1/|Q|Q1

We denote by Q0 the uniform distribution over Q:

In general we want to consider a set Q of queries
q1,…,qk closed under negation.

28
DualQuery

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for DualQuery
1: function DualQuery(D, Q, C, s, –, Q0)
2: for i Ω 1, . . . , C do

3: Sample s queries qs

1, . . . , qs

s

from Q
4: Find x

i

such that
5:

1
1
s

q
j

qs

j

(x
i

)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
6: Q

i

(q) = Q
i≠1(q) ◊ exp(≠–(q(xi)≠q(D))

2n

)
7: Q

i

= renormalize(Q
i

)
8: end for

9: return

t
i<C

x
i

10: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(≠q1(xj)
2n

)

29
DualQuery - Privacy

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for DualQuery
1: function DualQuery(D, Q, T , s, –, Q1)
2: Sample s queries qs

1, . . . , qs

s

from Q
3: Find x1 such that
4:

1
1
s

q
j

qs

j

(x1)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
5: for i Ω 2, . . . , T do

6: u
i

(D, q) =
q

i≠1
j

q(x
j

) ≠ q(D)
7: q̂ Ω ExpMech(D, u

i

, –(i≠1)
n

)
8: Sample s queries qs

1, . . . , qs

s

from Q
9: Find x

i

such that
10:

1
1
s

q
j

qs

j

(x
i

)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
11: end for

12: return

t
iÆT

x
i

13: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(≠q1(xj)
2n

)

Theorem 1.15. DualQuery is di�erentially private for:

‘ = –T (T ≠ 1)s
4n

30
DualQuery revisited

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for DualQuery
1: function DualQuery(D, Q, T , s, –, Q1)
2: Sample s queries qs

1, . . . , qs

s

from Q
3: Find x1 such that
4:

1
1
s

q
j

qs

j

(x1)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
5: for i Ω 2, . . . , T do

6: u
i

(D, q) =
q

i≠1
j

q(x
j

) ≠ q(D)
7: Sample s queries qs

1, . . . , qs

s

as
8: qs

k

Ω ExpMech(D, u
i

, –(i≠1)
n

)
9: Find x

i

such that
10:

1
1
s

q
j

qs

j

(x
i

)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
11: end for

12: return

t
iÆT

x
i

13: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(≠q1(xj)
2n

)

Theorem 1.15. DualQuery is di�erentially private for:

‘ = –T (T ≠ 1)s
4n

The privacy
proof

follows by
composition

31
DualQuery - Accuracy

Similarly to the proof of Theorem 4.1, it can be shown that:

Proposition 4.2 (the exponential mechanism, due to McSherry and Talwar [78]). For every func-
tion score : Xn ⇥ Y ! R such that Y is finite, " � 0, and B > 0,

1. If B � maxz GS
score(·,z), then the mechanism M

score,B is 2"-di↵erentially private, and

2. For every dataset x 2 Xn, with high probability M
score,B(x) outputs y such that

score(x, y) � argmaxy⇤ score(x, y
⇤)�O(log |Y|) ·B/".

The downside. While the exponential mechanism is very powerful, it can be computationally
very expensive, as a direct implementation requires enumerating over all y 2 Y. Indeed, in the
application of Theorem 4.1, the computation time is roughly

|Y| = |X|m = exp

✓

log |Q| log |X|
↵2

◆

,

so it is very slow. For example, we get runtime exp(d2/↵2) for the query family Qconj of conjunctions
on {0, 1}d.

4.2 Private Multiplicative Weights

We now present the state-of-art algorithm for general queries:

Theorem 4.3 (private multiplicative weights, due to Hardt and Rothblum [57]). For every set
Q of counting queries on a data universe X and every ", � > 0, there exists an (", �)-di↵erentially
private mechanism M such that for all datasets x 2 Xn, with high probability M(x) answers all
queries in Q to within error at most

↵ = O

p

log |X| · log(1/�) · log |Q|
"n

!

1/2

.

Moreover, M(x) can answer the queries in an on-line fashion (answering each query as it arrives)
and runs in time poly(n, |X|) per query.

The algorithm can also be modified to produce a synthetic dataset, though we won’t show it
here.

Note that the error vanishes more quickly with n than in Theorem 4.1 (as 1/n1/2 rather than
1/n1/3), and the log |X| has been replaced by

p

log |X| · log(1/�). Comparing to the results we have
seen for our example query families, we have:

For Qconj and Q
conj

t , we obtain a savings in the dependence on |X| = 2d. In particular, for answer-
ing all conjunctions on {0, 1}d with error tending to zero, we only need n = !(d3/2 ·

p

log(1/�)/")
rather than n = !(d2/") as in Theorem 4.1. The running time has improved, too, but is still at
least |X| · |Q|, which is exponential in d. (Of course, in this generality, one needs |X| · |Q| bits to
specify an arbitrary set of counting queries on {0, 1}d.)

29

Accuracy Theorem: MWEM achieves max-error:

Accuracy Theorem: SmallDB achieves max-error:

This, in turn, is no more than the maximum degree of G. In contrast the global sensitivity is
GSq� = n � 2. However, if we consider the global sensitivity of the local sensitivity, we have
GS

LS

q�
= 1. (If we think of the local sensitivity as a discrete analogue of a derivative, then this is

the analogue of having a bounded second derivative, despite the derivative sometimes being large.)
Consider the following mechanism M(G):

• Compute �̂ = LSq�(G) + Lap(1/") + ln(1/�)/".

• Output q
�

(G) + Lap(�̂/").

This mechanism can be shown to be (2", �)-di↵erentially private, and the total noise is of
magnitude:

O

✓

LSq�(G) + (1 + log(1/�))/"

"

◆

.

Note that this approach is computationally e�cient if we can e�ciently evaluate the query q,
can e�ciently calculate LSq (which requires at most |X| evaluations of q), and and have an upper
bound on GS

LS

q

.

4 Releasing Many Counting Queries with Correlated Noise

We have seen (in Thms. 2.6, 2.7, and 2.9) that any set Q of counting queries over data universe X

can be answered with di↵erential privacy and an error of at most:

↵ O

min

(

|Q|
"n

,

p

|Q| · log(1/�) · log log |Q|
"n

,

p

|X| · log |Q|
"n

)!

on each of the queries (with high probability). When both |Q| and |X| are larger than n2, the
amount of error is larger than 1, and hence these approaches provide nothing useful (recall that
the true answers lie in [0, 1]).

In this section, we will see two methods that can answer many more than n2 counting queries
on a data universe of size much larger than n2. Both use ideas from Learning Theory.

4.1 The SmallDB Algorithm

Theorem 4.1 (the SmallDB algorithm, due to Blum et al. [14]). For every set Q of counting
queries on a data universe X and every " > 0, there exists an "-di↵erentially private mechanism
M such that for all datasets x 2 Xn, with high probability M(x) answers all queries in Q to within
error at most

↵ = O

✓

log |Q| log |X|
"n

◆

1/3

.

Moreover, M(x) outputs a “synthetic dataset” y 2 Xm with m = O(log |Q|/↵2) such that with high
probability, we have |q(y)� q(x)| ↵ for all q 2 Q, i.e., we can calculate all the answers using the
(smaller) synthetic dataset.

In fact, the bounds can be improved to ↵ = Õ(VC(Q) · log |X|/"n)1/3 and m = VC(Q) · Õ(1/↵2),
where VC(Q) is the Vapnik-Chervonenkis dimension of the class Q.5

5VC(Q) is defined to be the largest number k such that there exist x1, . . . , x
k

2 X for which {(q(x1), . . . , q(x
k

)) :
q 2 Q} = {0, 1}k. Clearly, VC(Q) log |Q|.

26

Accuracy Theorem: DualQuery achieves max-error:

Define the true weighted answer Q(x) to be

Q(x) =

|Q|X

i=1

p
i

q
i

(x).

Then with probability at least 1� �, we have |q(x)�Q(x)| < ↵/4 for every x 2 X .

Proof. For any fixed x, note that q(x) is the average of random variables bq1(x), . . . , bqs(x). Also, note that
E[q(x)] = Q(x). Thus, by the Chernoff bound (Lemma 4.4) and our choice of s,

Pr[|q(x)�Q(x)| > ↵/4] < 2 exp(�s↵2/48) = �/|X |.

By a union bound over x 2 X , this equation holds for all x 2 X with probability at least 1� �.

Next, we show that we compute an approximate equilibrium of the query release game. In particular,
the record best responses form a synthetic database that answer all queries in Q accurately. Note that our
algorithm doesn’t require an exact best response for the data player; an approximate best response will do.

Theorem 4.6. With probability at least 1��, DualQuery finds a synthetic database that answers all queries
in Q within additive error ↵.

Proof. As discussed in Section 3, it suffices to show that the distribution of best responses x1, . . . , xT forms
is an ↵-approximate equilibrium strategy in the query release game. First, we set the number of samples
s according to in Lemma 4.5 with failure probability �/T . By a union bound over T rounds, sampling is
successful for every round with probability at least 1� �; condition on this event.

Since we are finding an ↵/4 approximate best response to the sampled aggregate query q, which differs
from the true distribution by at most ↵/4 (by Lemma 4.5), each xi is an ↵/4 + ↵/4 = ↵/2 approximate
best response to the true distribution Qt. Since q takes values in [0, 1], the payoffs are all in [�1, 1]. Hence,
Theorem 3.2 applies; setting T and ⌘ accordingly gives the result.

Remark 4.7. The guarantee in Theorem 4.6 may seem a little unusual, since the convention in the literature
is to treat ", � as inputs to the algorithm. We can do the same: from Theorem 4.3 and plugging in for T, ⌘, s,
we have

" =
4⌘T

p
2sT log(1/�)

n

=

256 log

3/2 |Q|
p
6 log(1/�) log(2|X |T/�)
↵3n

.

Solving for ↵, we find

↵ = O

log

1/2 |Q| log1/6(1/�) log1/6(2|X |/�)
n1/3"1/3

!
,

for � < �/T .

5 Case study: 3-way marginals

In our algorithm, the computationally difficult step is finding the data player’s approximate best response
against the query player’s distribution. As mentioned above, the form of this problem depends on the partic-
ular query class Q. In this section, we first discuss the optimization problem in general, and then specifically
for the well-studied class of marginal queries.

9

32
DualQuery novelty?

1.12. Example: releasing an approximate Cumulative Distribution
Function 29

Algorithm 10 Pseudo-code for MW
1: function MW(D, q, m)
2: for x Ω X do

3: DÕ(x) = D(x) ◊ exp(q(x) (m≠q(D))
2)

4: renormalize DÕ

5: end for

6: return DÕ

7: end function

Algorithm 11 Pseudo-code for DualQuery
1: function DualQuery(D, Q, T , s, –, Q1)
2: Sample s queries qs

1, . . . , qs

s

from Q
3: Find x1 such that
4:

1
1
s

q
j

qs

j

(x1)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
5: for i Ω 2, . . . , T do

6: u
i

(D, q) =
q

i≠1
j

q(x
j

) ≠ q(D)
7: Sample s queries qs

1, . . . , qs

s

as
8: qs

k

Ω ExpMech(D, u
i

, –(i≠1)
n

)
9: Find x

i

such that
10:

1
1
s

q
j

qs

j

(x
i

)
2

Ø
1
max

x

1
s

q
j

qs

j

(x)
2

≠ –/4
11: end for

12: return

t
iÆT

x
i

13: end function

q̂1(x1) q̂1(x2) q̂1(x3) q̂1(x4) q̂1(x5) q̂1(x6) q̂1(x|X |)

q̂1(D) ≠ q̂(D0) = ≠1
D1(x

j

) = D0(x
j

) ◊ exp(≠q1(xj)
2n

)

Theorem 1.15. DualQuery is di�erentially private for:

‘ = –T (T ≠ 1)s
4n

The most
expensive

task is
non-private

We can use
standard

optimization
tools

Example k-way marginals 33

Let’s consider the universe domain and let’s consider
 and

We call a conjunction or k-way marginal the associated counting
query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

where

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

and

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

q
y

(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query q
y

: X n æ
[0, 1]. Answering all the point functions q

y

for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

q
y

(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query q
y

:
X n æ [0, 1]. Answering all the threshold functions q

y

for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

q
j

(x) = x
j

and call an attribute mean the associated counting query q
y

:
X n æ [0, 1]. Answering an attribute mean query q

j

for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

q
v̨

(x) = q
v1(x) · q

v1(x) · · · · · q
vk(x)

which is the conjunction of k atomic predicates defined respectively
as q

j

(x) = x
j

and q
j̄

(x) = ¬x
j

for 1 Æ k Æ d. We call an
conjunction the counting query q

v̨

: X n æ [0, 1] associated to one
such predicate q

v̨

. For a vector v̨ such that |v̨| = k, answering

We can create a corresponding integer program problem.

Example 3-way marginals 34

for each sampled conjunction bu
i

, a variable d
i

for each sampled negated conjunction bv
i

, and we form the
following integer program.

max

X

i

c
i

+

X

j

d
j

with 8bu
i

= q
abc

: x
a

+ x
b

+ x
c

� 3c
i

8bv
j

= q
abc

: (1� x
a

) + (1� x
b

) + (1� x
c

) � d
j

x
i

, c
i

, d
i

2 {0, 1}

Note x
i

, 1 � x
i

corresponds to the literals x
i

, x
i

, c
i

= 1, d
i

= 1 exactly when their respective clauses are
satisfied. Thus, the objective is the number of satisfied clauses. The resulting integer program can be solved
using many existing solvers; we use CPLEX.

Dataset Size Attributes Binary attributes
Adult 30162 14 235
KDD99 494021 41 396
Netflix 480189 17,770 17,770

Figure 1: Test Datasets

6 Experimental evaluation

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0.5"

0" 1" 2" 3" 4" 5"

Adult:'Average'Max'Error'

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0" 1" 2" 3" 4" 5"

KDD99:%Average%Max%Error%

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0" 1" 2" 3" 4" 5"

Ne#lix:(Average(Max(Error(

Figure 2: Average max error of (", 0.001)-private DualQuery on 500,000 3-way marginals versus ".

We evaluate DualQuery on a large collection of 3-way marginal queries on several real datasets (Fig-
ure 1) and high dimensional synthetic data. Adult (census data) and KDD99 (network packet data) are from
the UCI repository [2], and have a mixture of discrete (but non-binary) and continuous attributes, which we
discretize into binary attributes. We also use the (in)famous Netflix [28] movie ratings dataset, with more
than 17,000 binary attributes. More precisely, we can consider each attribute (corresponding to a movie) to
be 1 if a user has watched that movie, and 0 otherwise.

Rather than set the parameters as in Algorithm 2, we experiment with a range of parameters. For instance,
we frequently run for fewer rounds (lower T) and take fewer samples (lower s). As such, the accuracy guar-
antee (Theorem 4.6) need not hold for our parameters. However, we find that our algorithm gives good error,
often much better than predicted. In all cases, our parameters satisfy the privacy guarantee Theorem 4.3.

11

