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Differential privacy

\

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &




Blatantly non-privacy

The privacy mechanism M:Xn — R is blatantly
non-private if an adversary can build a
candidate database D’e Xn, that agrees with the
real database D in all but o(n) entries:

du(D,D’)eo(n)



Differential privacy prevents
blatantly non-privacy

r ™

Consider a uniformly random dataset DeXn.
Suppose Q: Xn = R is (g,0)-differentially
private.

Then the the expected fraction of rows that
any adversary can reconstruct is at most:
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Multiple queries




Multiple queries

Using standard composition we have as a max error

() =)

rNotice that if we don’t renormalize this is of the order of
o(—)
€global

_bigger than the sample error. |
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Advanced Composition

Using advanced composition we have as a max error

1
7 ( €global \/ﬁ)

rlf we don’'t renormalize this is of the order of

o( ")
€global
_.comparable to the sample error. J

[DworkRothblumVadhan 10, SteinkeUllman | 6]



Answering multiple queries

We have seen several methods to answer a single query:
- Randomized Response

- Laplace Mechanism

- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer \/n queries.
- Advanced composition - we can answer n queries.



Reconstruction attack with’
polynomial adversary

[DinurNissim’02, DworkYekhanin’08]



SmallDB: Answering 1
multiple linear queries

Algorithm 5 Pseudo-code for SmallDB
1: function SMALLDB(D, Q, €, o)
2: Let m = %@
3: Let u: X" x X" — R be defined as:

u(D, D;) = — o lq(D) — q(D;)|

4: Let D' + Mpg(D,u,e)
5: return D’
6: end function




SmallDB: Answering
multiple linear queries

Theorem 4.5. By the appropriate choice of «, letting y be the database
output by SmallDB(z, Q,¢, §), we can ensure that with probability

1 — 3

16log |X'|log |Q| + 4 log (l) e
max |f(z) — f(y)| < ( - ) . (42)

feQ ellzllx
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SmallDB: Answering
multiple linear queries

Equivalently, for any database x with

1
2 16 log |X+ 41log (5)

with probability 1 — 5: maxseo |f(z) — f(y)| < «.
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Answering multiple queries

We have seen several methods to answer a single query:
- Randomized Response

- Laplace Mechanism

- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer \/n queries.
- Advanced composition - we can answer n queries.

If we allow coordinating noise among different queries we
can answer close to an exponential number of queries.



Reconstruction attack with’
exponential adversary

[DinurNissim’02]



Private Data Release
{Ql ----- Qn}

\4
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MWEM

Multiplicative Weight Exponential Mechanism

An algorithm for IDC for linear queries based on:
- the Exponential mechanism to select the query
maximizing the difference,

- the Multiplicative Weight update rule to update
the database.



Dataset as a distribution 7
over the universe

The algorithm views a dataset D as a distribution over rows x € X.

:#{’I:E[n]:dizat}

n

D(x)

Then,
¢(D) = Ex—plg(z)]

We denote by D the uniform distribution over X'

Do iIMm {111 | A | ... | ... | ... 1n




MWEM

Algorithm 9 Pseudo-code for MWEM

1: function MWEM(D, q1,...,qm, T, €, Dy)
2 fori:+1,....7T do

3 ui(D,q) = |q(Di—1) — q(D)|

4: g < ExpMech(D, u;,ne/2T)

5: m; < q(D) + Lap(T/ne)
6

7
8

Di(x) = Di-1(z) x exp(q(z) =712
D; = renormalize(D;)
end for
9: return avg,_rD;
10: end function
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MWV Intuition

Di(z) = D;_1 () x exp(q(x) dP2)=alLic1)))

For a given query Q:

e |[fq(D)>>q(Di-1), we should scale up the weights on
records contributing positively, and scale down the
ones contributing negatively,

e |f q(D)<<q(Di1), we should scale down the weights
on records contributing positively, and scale up the
ones contributing negatively.
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MWV Intuition

Let's consider counting queries.

Do MmN ||| ... | . ... | ..... | 1n
qi(x1) qi(z2) Gilxs) qilze) @ulzs) @) oo oo ol Gi(Tp)
0 1 1 0 1 0 1

D1 in |e®n|e?mn| 1/n |en| 1/n | ..... | ... | ..... |e”n

Lets assume  ¢i(D) —¢(Do) =1 then Di(z;) = Do(z;) X exP(@)



MWEM
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(

Accuracy Theorem: MWEM achieves max-error:

0 =0 (\/log|x| Tog(1/9) [log 1),

EN

-

Accuracy Theorem: SmallDB achieves max-error:

loglfm)m
a=0 - .




Adaptive MWEM

Algorithm 13 Pseudo-code for Adaptive MWENM using SparseVector

outputting a stream of answers

1:
2
3
1
5

0

?h

23:
24:

function ADA-MWEM(D {q¢;}.T,0.e0.Dp)
i=]
ap = a0 + Lap(ﬂ%n)
for each query ¢; do
if |g(Di-1) —q(D)| + Lap(
ri = q(z) + Lap_;

) > ('i.,'_l then

A1
cOre

G = a + Lap(#)
t=1+1
for r € A do

if a > ¢q(D;_,) then
Di(z) = Di_a(x) x exp(d(2)g)
else if o < ¢(D;_ 1) then
Dy(z) = Di—1(x) x exp(—i(x)2)
end if
end for
D; = renormalize(D;)
else
ri = q(h)
end if
if i > T then
Halt
end if
end for
end function

22



Adaptive MWEM

23

(

Theorem 1.16. Assuming 1" = O(l‘fglxl), Ada-MWEM is
(¢, 0)-differentially private for:

5 ( \/1og|«v| log(1/9) ,60)

\




Adaptive MWEM

24

Theorem 1.17. Let ¥ = Ada-MWEM(D, {¢;}, T, a, €9, Dy), then with
high probability for each 1:

i(D) —ri| < —
(D) =il < -
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MWEM

Keep a distribution over the databases, and search
for a query which maximize the error, to be used in
the update rule.

Distribution Search space

‘ {Q1,...,Qn}

SI1E15151515
0] ) ) v M M
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A dual approach

Keep a distribution over the queries, and search for
a record which maximize the error, to be used in
the update rule.

Distribution Search space

A 1

{QI,...,Qn}
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. . o . 2
Distribution over queries

In general we want to consider a set Q of queries
d1,...,0k closed under negation.

We denote by Qo the uniform distribution over Q:

Q1 11Q| | 1/1Ql | Q] | 11Ql | 1/1Q1 | 1Q] | oo | oo | oo | UQ




DualQuery

Algorithm 11 Pseudo-code for DualQuery

1: function DUALQUERY(D, Q, C, s, a, Qo)

2 fori+<1,...,C do

3: Sample s queries ¢y, ...,q; from Q

4: Find z; such that

5: (]: D qj(xz)) > (ma.x:l; % D qj(:c)) — /4
6 Qi(q) = Qi-1(q) x eXP(—a(q(xi)z_.,f(D)))

7: (2; = renormalize(Q);)

8 end for

9: return (J; o x;

10: end function

28



DualQuery - Privacy

29

f

Theorem 1.15. DualQuery is differentially private for:
~aT(T—1)s
- 4dn

€




30

DualQuery revisited

Algorithm 11 Pseudo-code for DualQuery

: 1: function DUALQUERY (D, Q, T, s, a, Q1)
The privacy , Sample s queries ¢3, ..., q¢; from @
prOOf 3: Find x1 such that
follows by 4 (% > q}(u)) > (ma.x_/r % > q;(l)) — a4
COmpgsition 5: for i+ 2,...,T 'do
6: ui(D,q) = 5 " q(x;) — q(D)
7: Sample s queries ¢7,...,q; as
8 q;. < ExpMech(D, u;, a(i;l))
9: Find z; such that
10: (% > i q;?(.-'z:.,;)) > (maxm % )F q;(.r)) — a/4
11: end for
12: return (J;«q z;

13: end function




DualQuery - Accuracy

31

-

Accuracy Theorem: DualQuery achieves max-error:

Q|log'/5(1/68) 1og'/5(2| x| /7)

a =0

\

o

(Accuracy Theorem: SmallDB achieves max-error:
o, (1og[2)iog ]\
y _ |

o

(Accuracy Theorem: MWEM achieves max-error:

e 1/2
oo (VR ET)

J/
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DualQuery novelty?

Algorithm 11 Pseudo-code for DualQuery

The most

1: function DUALQUERY(D, Q, C, s, a, Q)
expensive = 2 fori«1,...,C do
task is 3 Sample s queries ¢f, ..., q; from @Q
non-private 4 Fing
O: A .
6 Qi(q) = Qi-1(q) x exp(—a(T=77=7)
We can use 7 Q; = renormalize(Q;)
standard 8 end for
optimization 9 return ;¢ x;
tools 10: end function

I ——



Example k-way marginals  *

Let’s consider the universe domain X = {0,1}¢ and let’s consider
ve{l1,. dd}kW1th1<k<dand

qa(w) = quy (T) N Gy (T) A=+ N Gy ()

where ¢j(z) = z; and Q3(33) — Ty

We call a conjunction or k-way marginal the associated counting
uer

T Y qdi - X" — [0, 1]

We can create a corresponding integer program problem.




Example 3-way marginals

maxz:ci +Zdj
z J

with Vi, = qupe @ Ta + Tp + T > 304

VU; = Qabe : (1 —xq) + (1 —2p) + (1 —2¢) > d;

Ti, Ci, d; € {0, 1}
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