CSE660 Differential Privacy

October 23, 2017

Marco Gaboardi

Room: 338-B

<u>gaboardi@buffalo.edu</u>

http://www.buffalo.edu/~gaboardi

Differential privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: $X^n \to R$ is (ε, δ) -differentially private iff

for all adjacent database b_1 , b_2 and for every $S \subseteq R$:

 $Pr[Q(b_1) \in S] \leq exp(\mathcal{E})Pr[Q(b_2) \in S] + \delta$

Blatantly non-privacy

The privacy mechanism $M:X^n \to R$ is blatantly non-private if an adversary can build a candidate database $D' \in X^n$, that agrees with the real database D in all but o(n) entries: $d_H(D,D') \in o(n)$

Differential privacy prevents blatantly non-privacy

Consider a uniformly random dataset D∈Xⁿ.

Suppose Q: $X^n \rightarrow R$ is (ε, δ) -differentially private.

Then the the expected fraction of rows that any adversary can reconstruct is at most:

$$\frac{e^{\epsilon}}{|X|} + \delta$$

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under E-DP?

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under E-DP?

Using standard composition we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}} n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Notice that if we don't renormalize this is of the order of

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}}\right)$$

bigger than the sample error.

Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

Using advanced composition we have as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of

$$O\left(\frac{\sqrt{n}}{\epsilon_{\mathsf{global}}}\right)$$

comparable to the sample error.

[DworkRothblumVadhan I 0, SteinkeUllman I 6]

Answering multiple queries

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition we can answer √n queries.
- Advanced composition we can answer n queries.

Reconstruction attack with polynomial adversary

Let $M:\{0,1\}^n \to R$ be a privacy mechanism using additive error $o(1/\sqrt{n})$. Then we can show M blatantly non-private against an adversary A answering n queries.

SmallDB: Answering multiple linear queries

Algorithm 5 Pseudo-code for SmallDB

1: function SmallDB(D, Q, ϵ, α)

2: Let
$$m = \frac{\log |Q|}{\alpha^2}$$

3: Let $u: \mathcal{X}^n \times \mathcal{X}^m \to \mathbb{R}$ be defined as:

$$u(D, D_i) = -\max_{q \in Q} |q(D) - q(D_i)|$$

4: Let $D' \leftarrow \mathcal{M}_E(D, u, \epsilon)$

5: return D'

6: end function

SmallDB: Answering multiple linear queries

Theorem 4.5. By the appropriate choice of α , letting y be the database output by SmallDB $(x, \mathcal{Q}, \varepsilon, \frac{\alpha}{2})$, we can ensure that with probability $1 - \beta$:

$$\max_{f \in \mathcal{Q}} |f(x) - f(y)| \le \left(\frac{16 \log |\mathcal{X}| \log |\mathcal{Q}| + 4 \log \left(\frac{1}{\beta}\right)}{\varepsilon ||x||_1}\right)^{1/3}. \tag{4.2}$$

SmallDB: Answering multiple linear queries

Equivalently, for any database x with

$$||x||_1 \ge \frac{16\log|\mathcal{X}|\log|\mathcal{Q}| + 4\log\left(\frac{1}{\beta}\right)}{\varepsilon\alpha^3}$$

with probability $1 - \beta$: $\max_{f \in \mathcal{Q}} |f(x) - f(y)| \le \alpha$.

Answering multiple queries

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition we can answer √n queries.
- Advanced composition we can answer n queries.

If we allow coordinating noise among different queries we can answer close to an exponential number of queries.

Reconstruction attack with exponential adversary

Let M:Xⁿ → R be a privacy mechanism using additive error o(1) perturbation. Then M is blatantly non-private against an adversary A answering 2ⁿ (non-normalized) queries.

Private Data Release

 $\left\{ Q_{1},...,Q_{n}\right\}$

MWEM

Multiplicative Weight Exponential Mechanism

An algorithm for IDC for linear queries based on:

- the Exponential mechanism to select the query maximizing the difference,
- the Multiplicative Weight update rule to update the database.

Dataset as a distribution 17 over the universe

The algorithm views a dataset D as a distribution over rows $x \in \mathcal{X}$.

$$D(x) = \frac{\#\{i \in [n] : d_i = x\}}{n}$$

Then,

$$q(D) = \mathbb{E}_{x \to D}[q(x)]$$

We denote by D_0 the uniform distribution over \mathcal{X} .

D_0	1/n	1/n	1/n	1/n	1/n	1/n				1/n	
-------	-----	-----	-----	-----	-----	-----	--	--	--	-----	--

MWEM

Algorithm 9 Pseudo-code for MWEM

```
1: function MWEM(D, q_1, \ldots, q_m, T, \epsilon, D_0)
          for i \leftarrow 1, \ldots, T do
 2:
               u_i(D,q) = |q(D_{i-1}) - q(D)|
 3:
               \hat{q} \leftarrow \mathsf{ExpMech}(D, u_i, n\epsilon/2T)
 4:
               m_i \leftarrow \hat{q}(D) + \mathsf{Lap}(T/n\epsilon)
 5:
               D_i(x) = D_{i-1}(x) \times \exp(\hat{q}(x) \frac{(m-\hat{q}(D_{i-1}))}{2})
 6:
               D_i = \text{renormalize}(D_i)
 7:
          end for
 8:
          return avg_{i < T}D_i
 9:
10: end function
```

MW Intuition

$$D_i(x) = D_{i-1}(x) \times \exp(q(x) \frac{(q(D) - q(D_{i-1}))}{2n})$$

For a given query q:

- If q(D)>>q(D_{i-1}), we should scale up the weights on records contributing positively, and scale down the ones contributing negatively,
- If q(D)<<q(D_{i-1}), we should scale down the weights on records contributing positively, and scale up the ones contributing negatively.

MW Intuition

Let's consider counting queries.

Let's assume $\hat{q}_1(D) - \hat{q}(D_0) = 1$ then $D_1(x_j) = D_0(x_j) \times \exp(\frac{q_1(x_j)}{2})$

MWEM

Accuracy Theorem: MWEM achieves max-error:

$$\alpha = O\left(\frac{\sqrt{\log |\mathfrak{X}| \cdot \log(1/\delta)} \log |\mathfrak{Q}|}{\varepsilon n}\right)^{1/2}.$$

Accuracy Theorem: SmallDB achieves max-error:

$$\alpha = O\left(\frac{\log|\mathfrak{Q}|\log|\mathfrak{X}|}{\varepsilon n}\right)^{1/3}.$$

Adaptive MWEM

Algorithm 13 Pseudo-code for Adaptive MWEM using SparseVector outputting a stream of answers \vec{r}

```
1: function Ada-MWEM(D, \{q_i\}, T, \alpha, \epsilon_0, D_0)
 2:
          i = 1
          \hat{\alpha}_0 = \alpha + \mathsf{Lap}(\frac{1}{\epsilon_0 n})
           for each query q_i do
 4:
                if |q(D_{i-1}) - q(D)| + \mathsf{Lap}(\frac{1}{\epsilon_0 n}) \ge \hat{\alpha}_{i-1} then
 5:
                     r_i = q(x) + \mathsf{Lap} \frac{1}{\epsilon_0 n}
 6:
                     \hat{\alpha}_i = \alpha + \mathsf{Lap}(\frac{1}{\epsilon_0 n})
 7:
                     i = i + 1
 8:
                      for x \in \mathcal{X} do
 9:
                           if \alpha > q(D_{i-1}) then
10:
                                 D_i(x) = D_{i-1}(x) \times \exp(\hat{q}(x)\frac{\alpha}{8})
11:
                           else if \alpha < q(D_{i-1}) then
12:
                                 D_i(x) = D_{i-1}(x) \times \exp(-\hat{q}(x)\frac{\alpha}{2})
13:
                           end if
14:
                      end for
15:
                      D_i = \text{renormalize}(D_i)
16:
                else
17:
                      r_i = q(h)
18:
                end if
19:
                if i \geq T then
20:
                      Halt
21:
                end if
22:
           end for
23:
24: end function
```

Adaptive MWEM

Theorem 1.16. Assuming $T = \frac{O(\log |\mathcal{X}|)}{\alpha^2}$, Ada-MWEM is (ϵ, δ) -differentially private for:

$$\epsilon = O\left(\sqrt{\frac{\log |\mathcal{X}| \log(1/\delta)}{\alpha^2}} \cdot \epsilon_0\right)$$

Adaptive MWEM

Theorem 1.17. Let $\vec{r} = \text{Ada-MWEM}(D, \{q_i\}, T, \alpha, \epsilon_0, D_0)$, then with high probability for each i:

$$|q_i(D) - r_i| \le \frac{3\alpha}{4}$$

MWEM

Keep a distribution over the databases, and search for a query which maximize the error, to be used in the update rule.

Distribution

Search space

A dual approach

Keep a distribution over the queries, and search for a record which maximize the error, to be used in the update rule.

Distribution

Search space

Distribution over queries

In general we want to consider a set Q of queries $q_1,...,q_k$ closed under negation.

We denote by Q₀ the uniform distribution over Q:

Q₁ 1/|Q| 1/|Q| 1/|Q| 1/|Q| 1/|Q| 1/|Q| 1/|Q|

DualQuery

Algorithm 11 Pseudo-code for DualQuery

```
1: function DualQuery(D, Q, C, s, \alpha, Q_0)
          for i \leftarrow 1, \ldots, C do
 2:
               Sample s queries q_1^s, \ldots, q_s^s from Q
 3:
               Find x_i such that
 4:
                   \left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \geq \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4
 5:
               Q_i(q) = Q_{i-1}(q) \times \exp(-\alpha(\frac{q(x_i) - q(D))}{2n})
 6:
               Q_i = \text{renormalize}(Q_i)
 7:
          end for
 8:
          return \bigcup_{i < C} x_i
 9:
10: end function
```

DualQuery - Privacy

Theorem 1.15. DualQuery is differentially private for:

$$\epsilon = \frac{\alpha T(T-1)s}{4n}$$

DualQuery revisited

Algorithm 11 Pseudo-code for DualQuery

The privacy proof follows by composition

```
1: function DualQuery(D, Q, T, s, \alpha, Q_1)
           Sample s queries q_1^s, \ldots, q_s^s from Q
           Find x_1 such that
               \left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{1})\right) \geq \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4
           for i \leftarrow 2, \dots, T do
 5:
                 u_i(D,q) = \sum_{i=1}^{i-1} q(x_i) - q(D)
 6:
                 Sample s queries q_1^s, \ldots, q_s^s as
                    q_k^s \leftarrow \mathsf{ExpMech}(D, u_i, \frac{\alpha(i-1)}{r})
 8:
                 Find x_i such that
 9:
                     \left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \geq \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4
10:
           end for
11:
           return \bigcup_{i < T} x_i
12:
13: end function
```

DualQuery - Accuracy

Accuracy Theorem: DualQuery achieves max-error:

$$\alpha = O\left(\frac{\log^{1/2} \mathcal{Q} |\log^{1/6}(1/\delta) \log^{1/6}(2|\mathcal{X}|/\gamma)}{n^{1/3} \varepsilon^{1/3}}\right)$$

Accuracy Theorem: SmallDB achieves max-error:

$$\alpha = O\left(\frac{\log|\mathfrak{Q}|\log|\mathfrak{X}|}{\varepsilon n}\right)^{1/3}.$$

Accuracy Theorem: MWEM achieves max-error:

$$\alpha = O\left(\frac{\sqrt{\log|\mathfrak{X}| \cdot \log(1/\delta)} \log|\mathfrak{Q}|}{\varepsilon n}\right)^{1/2}$$

DualQuery novelty?

The most expensive task is non-private

We can use standard optimization tools

Algorithm 11 Pseudo-code for DualQuery

```
1: function DUALQUERY(D, Q, C, s, \alpha, Q_0)
2: for i \leftarrow 1, \dots, C do
3: Sample s queries q_1^s, \dots, q_s^s from Q
```

4: Find x_i such that

5:
$$\left(\frac{1}{s}\sum_{j}q_{j}^{s}(x_{i})\right) \geq \left(\max_{x}\frac{1}{s}\sum_{j}q_{j}^{s}(x)\right) - \alpha/4$$

6:
$$Q_i(q) = Q_{i-1}(q) \times \exp(-\alpha(\frac{q(x_i) - q(D))}{2n})$$

7: $Q_i = \text{renormalize}(Q_i)$

8: end for

9: **return** $\bigcup_{i < C} x_i$

10: end function

Example k-way marginals

Let's consider the universe domain $\mathcal{X}=\{0,1\}^d$ and let's consider $\vec{v}\in\{1,\bar{1},\dots,d,\vec{d}\}^k$ with $1\leq k\leq d$ and

$$q_{\vec{v}}(x) = q_{v_1}(x) \land q_{v_1}(x) \land \cdots \land q_{v_k}(x)$$

where $q_j(x) = x_j$ and $q_{\bar{j}}(x) = \neg x_j$

We call a conjunction or k-way marginal the associated counting query $q_{\vec{v}}: \mathcal{X}^n \to [0,1]$

We can create a corresponding integer program problem.

Example 3-way marginals

$$\max \sum_{i} c_i + \sum_{j} d_j$$
with $\forall \widehat{u_i} = q_{abc} : x_a + x_b + x_c \ge 3c_i$

$$\forall \widehat{v_j} = \overline{q_{abc}} : (1 - x_a) + (1 - x_b) + (1 - x_c) \ge d_j$$

$$x_i, c_i, d_i \in \{0, 1\}$$