CSE660 Differential Privacy

November 1, 2017

Marco Gaboardi

Room: 338-B

gaboardi@buffalo.edu

http://www.buffalo.edu/~gaboardi

Outline of the class

Week 1

Introduction, motivation and privacy limitations. Definition of Differential Privacy and the curator model.

Week 2

Basic mechanisms: Randomized Response, Laplace Mechanism,

Week 3

Basic properties following from the definition, Exponential Mechanism and comparison with the other basic mechanisms.

Week 4

The Report Noisy max algorithm.

Week 5

The Sparse Vector technique. Releasing Many Counting Queries with Correlated Noise. The smallDB algorithm.

Week 6

The MWEM algorithm.

Outline of the class

Week 7

Revisiting MWEM, The DualQuery algorithm.

Week 8

Advanced Composition and variations on differential privacy: Renyi DP, zero-concentrated DP.

Week 9

Studying the experimental accuracy.

The local model for differential privacy.

Week 10

More algorithms for the local model.

Week 11

PAC learning and private PAC learning

Week 12

Differentially Private Hypothesis Testing

Week 13

Differential Privacy and Generalization in Adaptive Data Analysis

Week 14

Project presentations

Differential privacy

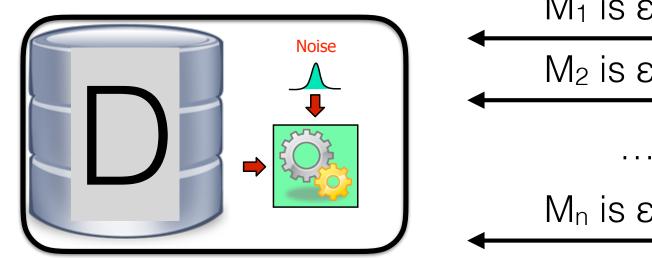
Definition

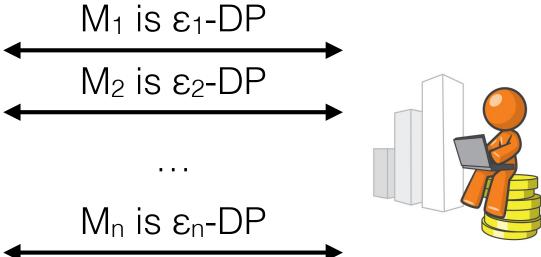
Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: $X^n \to R$ is (ε, δ) -differentially private iff

for all adjacent database b_1 , b_2 and for every $S \subseteq R$:

 $Pr[Q(b_1) \in S] \leq exp(\mathcal{E})Pr[Q(b_2) \in S] + \delta$

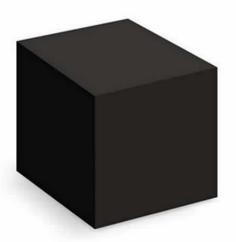
Composition





The overall process is $(\epsilon_1+\epsilon_2+...+\epsilon_n)$ -DP

Composition



We always need to think before applying composition to whether we have other options!

Composition

Theorem 1.18 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_i : $\mathcal{X}^n \to R_i$ be ϵ_i -differentially private algorithms (for $1 \le i \le k$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \dots, \mathcal{M}_k(D))$ is $\sum_{i=1}^k \epsilon_i$ -differentially private.

Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r as output of \mathcal{M} on the databases D and D'.

$$\mathcal{L}_{\mathcal{M}}^{D \to D'}(r) = \ln \left(\frac{\Pr[\mathcal{M}(D) = r]}{\Pr[\mathcal{M}(D') = r]} \right) = -\mathcal{L}_{\mathcal{M}}^{D' \to D}(r)$$

The $(\epsilon, 0)$ -differential privacy requirement corresponds to requiring that for every r and every adjacent D, D' we have:

$$\left| \mathcal{L}_{\mathcal{M}}^{D \to D'}(r) \right| \le \epsilon$$

(ε,δ)-Differential Privacy

This corresponds to a privacy loss of the form:

$$\mathcal{L}_{\mathcal{M}}^{D \to D'}(r) = \ln \left(\frac{\Pr[\mathcal{M}(D) = r|E]}{\Pr[\mathcal{M}(D') = r|E']} \right)$$

The (ϵ, δ) -differential privacy requirement corresponds to requiring that for every r and every adjacent D, D' we have:

$$\Pr\left[\left|\mathcal{L}_{\mathcal{M}}^{D\to D'}(r)\right| \le \epsilon\right] \ge 1 - \delta$$

Composition for (ϵ, δ) -DP

Theorem 1.22 (Standard composition for (ϵ, δ) -differential privacy). Let $\mathcal{M}_i : \mathcal{X}^n \to R_i$ be (ϵ_i, δ_i) -differentially private algorithms (for $1 \leq i \leq k$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \dots, \mathcal{M}_k(D))$ is $(\sum_{i=1}^k \epsilon_i, \sum_{i=1}^k \delta_i)$ -differentially private.

Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ϵ, δ) -DP?

Using advanced composition we have as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of

$$O\left(\frac{\sqrt{n}}{\epsilon_{\mathsf{global}}}\right)$$

comparable to the sample error.

[DworkRothblumVadhan I 0, SteinkeUllman I 6]

Advanced Composition

Theorem 1.23 (Advanced composition). Let $\mathcal{M}_i : \mathcal{X}^n \to R_i$ be (ϵ, δ) -differentially private algorithms (for $1 \le i \le k$ and $k < 1/\epsilon$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \dots, \mathcal{M}_k(D))$ is $(O(\sqrt{2k \ln(1/\delta')})\epsilon, k\delta + \delta')$ -differentially private for every $\delta' > 0$.

Intuition: some of the outputs have positive privacy loss (i.e. give evidence for dataset D) and some have negative privacy loss (i.e. give evidence for dataset D'). The cancellations gives a smaller overall privacy loss.

Strategy:

1-considering the expected value of the privacy loss, 2-bound the privacy loss of all the variables together 3-compute the probability

Answering multiple queries

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:

- Standard composition we can answer √n queries.
- Advanced composition we can answer n queries.

Gaussian Mechanism

We have seen several methods to answer a single query:

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

These mechanisms are (ε, δ) -differentially private for every $\varepsilon > 0$ and $\delta \ge 0$.

We will add today another one that is (ε, δ) -differentially private for every $\varepsilon > 0$ and $\delta > 0$.

Another measure of global sensitivity

Definition 1.13 (Global sensitivity in ℓ_2). The *global sensitivity in* ℓ_2 of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

$$\Delta_2 q = \max \left\{ \sqrt{(q(D) - q(D'))^2} \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Gaussian Mechanism

Algorithm 14 Pseudo-code for the Gaussian Mechanism

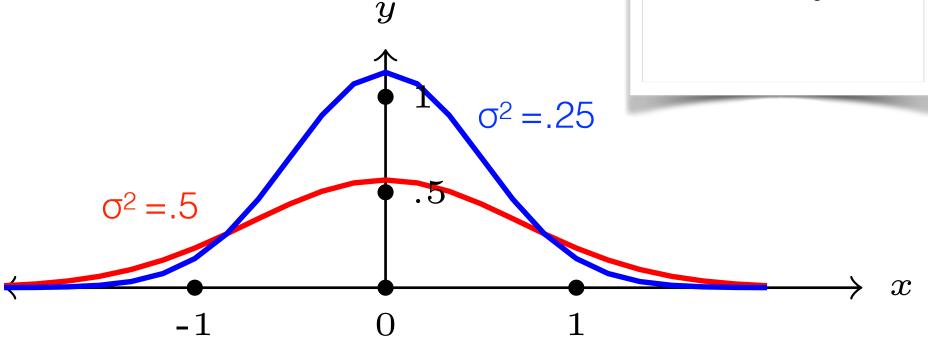
- 1: function GaussMech (D, q, ϵ)
- 2: $Y \xleftarrow{\$} \mathsf{Gauss}(0, \frac{2\ln(\frac{1.25}{\delta})(\Delta_2 q)^2}{\epsilon^2})$
- 3: **return** q(D) + Y
- 4: end function

Gaussian Distribution

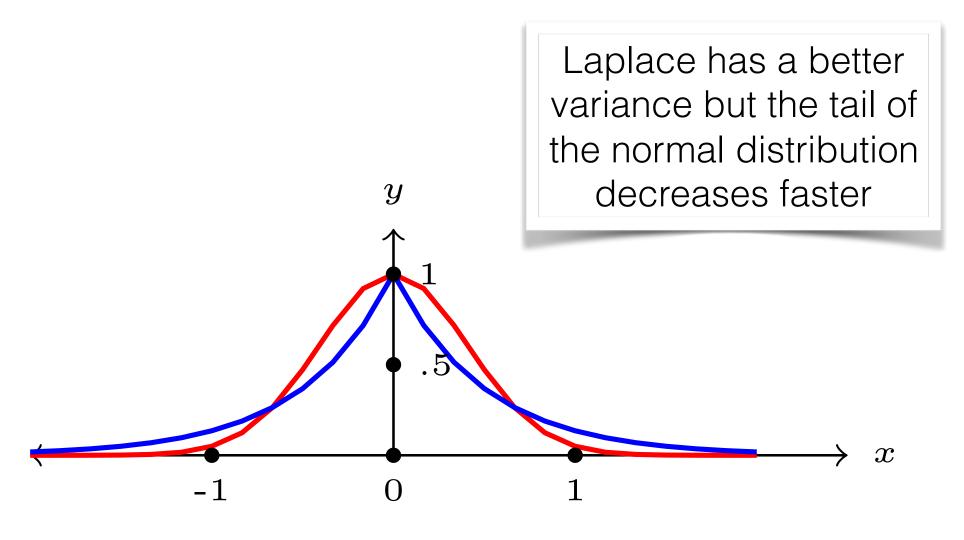
$$\operatorname{Gauss}(\mu, \sigma^2)(X) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}((X - \mu)^2)\right)$$

σ² regulates the the curve, in our case

$$\sigma^2 = \frac{2\ln(\frac{1.25}{\delta})(\Delta_2 q)^2}{\epsilon^2}$$



Gaussian vs Laplace Distribution



Gaussian Mechanism

Theorem (Privacy of the Gaussian Mechanism)

The Gaussian mechanism is (ε,δ) -differentially private.

