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Differential privacy

\

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &




Differential privacy

So far, we have considered a curator model: a model
where there is a trusted centralized party that holds the

data and to which we can ask our queries.
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Multiparty differential privacy




Noise on Input vs Noise on Output
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Multiparty Setting 887%
We now consider a model where the data is distributed
among m parties P1,...,Pm.

We assume that the data is evenly split among the parties,
each party Pi has n/m rows of the dataset.

Each party Pi want to guarantee privacy for its data
against an adversary that may control the other parties.

We will study protocols to compute statistics over the data.



Adversaries

We assume that the adversaries are:

- passive (honest-but-curious): they follow the specified
protocol but try to extract information from what they
see,

- computationally unbounded: we will not restrict the

capacity of the adversary,
- control several parties: an adversary can control t<m-1
parties. We will focus on t=m-1.



Protocol
(Pl, c .. ,Pm)(x)

We consider a protocol as a sequence of rounds where:

- every party Pi selects a message to be broadcast based
on its input (a part of x), internal coin tosses, and all
messages received in previous rounds,

- the output of the protocol is specified by a deterministic

function of the transcript of messages exchanged,



Adversary view X% 9

Viewp , (P < (P1,...,Py)(x)) €T

We are interested in a protection against an adversary that
controls all the parties except the k-th one.

The view of the adversary is then determined by the inputs

and coin tosses of all parties other than Pk as well as the
messages sent by Pk.



Multiparty differential privacy

-

o

~

Definition 9.1 (multiparty differential privacy [7]). For a protocol P = (Py,..., P,,) taking as
input datasets (z1,...,2m) € (X™™)™ we say that P is (¢,d) differentially private (for passive
adversaries) if for every k € [m] and every two dataset z,2’ € (X™/™)™ that differ on one row of
Pi’s input (and are equal otherwise), the following holds for every set T

Pr[Viewp , (P_r & (P1,...,Py)(z)) € T) < € - Pr[Viewp_, (P_r & (P1,..., Py)(z")) € T] + 4.
J




Multiparty vs centralized "
differential privacy

The standard curator/centralized model corresponds to
the case m=1.

Notice that constructing useful differentially private
multiparty protocols for m=>2 parties is harder than
constructing them in the curator model - the trusted

curator could just simulate the entire protocol and return
the output.
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The local model

This is the extremal case where m=n.

We can think about this case as the one where each party
just holds one data, and does not trust any other party.

This is in some sense the hardest differential privacy
guarantee that one can provide.




Randomized Response
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Algorithm 1 Pseudo-code for Randomized Response

1: function RANDOMIZEDRESPONSE(D, g, €)
9 for k < 1 to |D| do

N o { q(d;)  with probability 1_6;6
| ’ —q(d;) with probability 5 -I}e‘-

4: end for

5: return (Sulrgl 5)

6: end function




Randomized Response

(Privacy Theorem:
Randomized response is e-differentially private in the local

kmodel.
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(Accuracy for Randomize response: with high probability\
we have: 1

& )’r—q(D)) SO(%) J




Randomized Response

vs Laplace
(Accuracy for Randomize response: with high probability\
we have: 1
r—q(D ) < O(—)
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" Accuracy for Laplace: with high probability we have:

o) +| <o}
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Randomized Response is
optimal in the local model
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Theorem 9.3 (randomized response is optimal in the local model [25]). For every nonconstant
counting query q : X — {0,1}, and n € N, and (1,0)-differentially private n-party protocol P for

approximating q, there is an input data set x € X" on which P has error a = Q(1/\/n) with high

probability.

J
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Proof sketch.
We consider X={0,1} and g(xi)=x..

Consider X to be a uniform random dataset, R the vector of randomness of
the different parties, and T=T(X,R) to be the transcript.



Randomized Response is
optimal in the local model

N
'(I‘heorem 9.3 (randomized response is optimal in the local model [25]). For every nonconstant
counting query q : X — {0,1}, and n € N, and (1,0)-differentially private n-party protocol P for
approximating q, there is an input data set x € X" on which P has error a = Q(1/\/n) with high
probability.
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Continued proof sketch.
Conditioning T=t, we have:

(X1,R1),...,(Xn,Rn) are independent and in particular Xi,...,Xn are
independent.

If the parties’ inputs start independent they remain independent
conditioned on the transcript.



Randomized Response is
optimal in the local model
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Theorem 9.3 (randomized response is optimal in the local model [25]). For every nonconstant

counting query q : X — {0,1}, and n € N, and (1,0)-differentially private n-party protocol P for
approximating q, there is an input data set x € X" on which P has error a = Q(1/\/n) with high
probability.
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Continued proof sketch.
Conditioning T=t, we also have: Pr[X

=1] € (1/4,3/4)

-,

Pr|X; = 1|T = Pr[T =t|X; =1] - Pr[X; = 1|/ Pr[T = t|
We have =
Pr[X; = 0|T =t Pr[T =t|X; = 0] - Pr[X; = 0]/ Pr[T = t|
- PriT=tX;=1
- Pr[T=tX;=0
€ [e c es].
This implies that
e* | J
PrX;=1T=t] € [ef Tl e x 1‘ C (1/4,3/4),



Randomized Response is
optimal in the local model
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Theorem 9.3 (randomized response is optimal in the local model [25]). For every nonconstant

counting query q : X — {0,1}, and n € N, and (1,0)-differentially private n-party protocol P for

approximating q, there is an input data set x € X" on which P has error a = Q(1/\/n) with high
probability.
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Continued proof sketch.

Consequently, conditioned on T = ¢, (1/n) - (3., X;) is the average of n independent {0,1}

random variables with bounded bias. In particular, the btdndard deviation of ) . X; is (1/y/n),
and by anti-concentration bounds, with high probability we will have

(1/n) ZX — output(t)| = Q(1/v/n),

where output(-) is the output function of the protocol. Since the protocol has error Q(1/y/n) on a

andom dataset with high probability, there is some fixed dataset on which it has error Q(1//n)
with high probability.



Randomized Response is
optimal in the local model
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Theorem 9.3 (randomized response is optimal in the local model [25]). For every nonconstant

counting query q : X — {0,1}, and n € N, and (1,0)-differentially private n-party protocol P for
approximating q, there is an input data set x € X" on which P has error a = Q(1/\/n) with high
probability.
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This can be generalized to arbitrary counting queries.



Randomized Response

vs Laplace
(Accuracy for Randomize response: with high probability\
we have: (D) ( 1 \
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