CSE660 Differential Privacy

November 20, 2017

Marco Gaboardi

Room: 338-B

<u>gaboardi@buffalo.edu</u>

http://www.buffalo.edu/~gaboardi

Differential privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: $X^n \to R$ is (ε, δ) -differentially private iff

for all adjacent database b_1 , b_2 and for every $S \subseteq R$:

 $Pr[Q(b_1) \in S] \leq exp(\mathcal{E})Pr[Q(b_2) \in S] + \delta$

Noise on Input vs Noise on Output

Laplace Mechanism

Algorithm 2 Pseudo-code for the Laplace Mechanism

- 1: **function** LapMech (D, q, ϵ)
- 2: $Y \xleftarrow{\$} \mathsf{Lap}(\frac{\Delta q}{\epsilon})(0)$
- 3: **return** q(D) + Y
- 4: end function

Gaussian Mechanism

Algorithm 14 Pseudo-code for the Gaussian Mechanism

1: function GaussMech (D, q, ϵ)

2:
$$Y \leftarrow \text{Gauss}(0, \frac{2\ln(\frac{1.25}{\delta})(\Delta_2 q)^2}{\epsilon^2})$$

- 3: **return** q(D) + Y
- 4: end function

Exponential Mechanism

Exponential Mechanism:

$$\mathcal{M}_E(x,u,\mathcal{R})$$
 return $r\in\mathcal{R}$ with prob.

$$\frac{\exp(\frac{\varepsilon u(x,r)}{2\Delta u})}{\sum_{r'\in\mathcal{R}} \exp(\frac{\varepsilon u(x,r')}{2\Delta u})}$$

Global Sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Local sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Definition 1.14 (Local sensitivity). The *local sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ at $D \in \mathcal{X}^n$ is:

$$\ell \Delta q(D) = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D', D' \in \mathcal{X}^n \right\}$$

Calibrating noise to the local sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have LS(D)=0 but that we also have $D\sim D'$ with $LS(D')=10^9$.

We will see that we can do anyway better than GS.

Some methods

- Smooth Sensitivity
- Propose-Test-Release
- Releasing Stable Values

Smooth Sensitivity

Definition 2.2 (Smooth sensitivity). For $\beta > 0$, the β -smooth sensitivity of f is

$$S_{f,\beta}^*(x) = \max_{y \in D^n} \left(LS_f(y) \cdot e^{-\beta d(x,y)} \right).$$

Definition 2.1 (A Smooth Bound on LS). For $\beta > 0$, a function $S: D^n \to \mathbb{R}^+$ is a β -smooth upper bound on the local sensitivity of f if it satisfies the following requirements:

$$\forall x \in D^n : S(x) \ge LS_f(x) ;$$
 (1)

$$\forall x, y \in D^n, d(x, y) = 1: \qquad S(x) \le e^{\beta} \cdot S(y). \tag{2}$$

What kind of noise can we add?

Admissible Noise

Definition 2.5 (Admissible Noise Distribution). A probability distribution on \mathbb{R}^d , given by a density function h, is (α, β) -admissible (with respect to ℓ_1) if, for $\alpha = \alpha(\epsilon, \delta)$, $\beta = \beta(\epsilon, \delta)$, the following two conditions hold for all $\Delta \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$ satisfying $\|\Delta\|_1 \leq \alpha$ and $|\lambda| \leq \beta$, and for all measurable subsets $S \subseteq \mathbb{R}^d$:

Sliding Property:
$$\Pr_{Z \sim h} \left[Z \in \mathcal{S} \right] \leq e^{\frac{\epsilon}{2}} \cdot \Pr_{Z \sim h} \left[Z \in \mathcal{S} + \Delta \right] + \tfrac{\delta}{2} \, .$$

Dilation Property:
$$\Pr_{Z \sim h} \left[Z \in \mathcal{S} \right] \leq e^{\frac{\epsilon}{2}} \cdot \Pr_{Z \sim h} \left[Z \in e^{\lambda} \cdot \mathcal{S} \right] + \tfrac{\delta}{2} \, .$$

Lemma 2.6. Let h be an (α, β) -admissible noise probability density function, and let Z be a fresh random variable sampled according to h. For a function $f: D^n \to \mathbb{R}^d$, let $S: D^n \to \mathbb{R}$ be a β -smooth upper bound on the local sensitivity of f. Then algorithm $A(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$ is (ϵ, δ) -differentially private.

For two neighbor databases x and y, the output distribution $\mathcal{A}(y)$ is a shifted and scaled version of $\mathcal{A}(x)$. The sliding and dilation properties ensure that $\Pr[\mathcal{A}(x) \in \mathcal{S}]$ and $\Pr[\mathcal{A}(y) \in \mathcal{S}]$ are close for all sets \mathcal{S} of outputs.

Admissible Noise

Adding noise $O(SS_q^{\epsilon}(x)/\epsilon)$ (according to a Cauchy distribution) is sufficient for ϵ -differential privacy.

Laplace and Gauss give (ε,δ) -DP

Computing the Smooth Sensitivity can be intractable.

[Nissim, Raskhodnikova, Smith '06]

Propose Test Release

Propose-test-release Given $q: \mathcal{X}^n \to \mathbb{R}, \ \epsilon, \delta, \beta \geq 0$

- 1. Propose a target bound β on local sensitivity.
- 2. Let $\hat{d} = d(x, \{x' : LS_q(x') > \beta\}) + Lap(1/\epsilon)$, where d denotes Hamming distance.
- 3. If $\hat{d} \leq \ln(1/\delta)/\varepsilon$, output \perp .
- 4. If $\hat{d} > \ln(1/\delta)/\varepsilon$, output $q(x) + \operatorname{Lap}(\beta/\varepsilon)$.

Propose Test Release

Proposition 3.2 (propose-test-release [33]). For every query $q: \mathfrak{X}^n \to \mathbb{R}$ and $\varepsilon, \delta, \beta \geq 0$, the above algorithm is $(2\varepsilon, \delta)$ -differentially private.

Proof. Consider any two neighboring datasets $x \sim x'$. Because of the Laplacian noise in the definition of \hat{d} and the fact that Hamming distance has global sensitivity at most 1, it follows that

$$\Pr[\mathcal{M}(x) = \bot] \in [e^{-\varepsilon} \cdot \Pr[\mathcal{M}(x') = \bot], e^{\varepsilon} \cdot \Pr[\mathcal{M}(x') = \bot]]. \tag{3}$$

Case 1: $LS_q(x) > \beta$. In this case, $d(x, \{x'' : LS_q(x'') > \beta\}) = 0$, so the probability that \hat{d} will exceed $\ln(1/\delta)/\varepsilon$ is at most δ . Thus, for every set $T \subseteq \mathbb{R} \cup \{\bot\}$, we have:

$$\Pr[\mathcal{M}(x) \in T] \leq \Pr[\mathcal{M}(x) \in T \cap \{\bot\}] + \Pr[\mathcal{M}(x) \neq \bot]$$

$$\leq e^{\varepsilon} \cdot \Pr[\mathcal{M}(x') \in T \cap \{\bot\}] + \delta$$

$$\leq e^{\varepsilon} \cdot \Pr[\mathcal{M}(x') \in T] + \delta,$$

where the second inequality follows from (3), noting that $T \cap \{\bot\}$ equals either $\{\bot\}$ or \emptyset .

Case 2: $LS_q(x) \le \beta$. In this case, $|q(x)-q(x')| \le \beta$, which in turn implies the $(\varepsilon, 0)$ -indistinguishability of $q(x) + Lap(\beta/\varepsilon)$ and $q(x') + Lap(\beta/\varepsilon)$. Thus, by (3) and Basic Composition, we have $(2\varepsilon, 0)$ -indistinguishability overall.

Laplace Mechanism

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

$$\mathsf{Lap}(b,\mu)(X) = \frac{1}{2b} \exp\left(-\frac{|\mu - X|}{b}\right)$$

$$\Pr\left[|X| \ge b\,t\right] = \exp(-t)$$