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Differential privacy

\

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &




Noise on Input vs Noise on Output

) »

\—/ q(dy) . .

\’i B f % % > q(di) %
Q(dn) +=0
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Laplace Mechanism

i Algorithm 2 Pseudo-code for the Laplace Mechanism

\

1: function LAPMECH(D, g, €)
2 Y & Lap(&9)(0)

3 return ¢(D)+Y

4: end function

q(-)




Gaussian Mechanism

Algorithm 14 Pseudo-code for the Gaussian Mechanism

1: function GAUSSMECH(D, ¢, ¢€)

n(L25)(Asq)?
v & Gauss(0, 2CE) 00"

2
B return ¢(D) +Y
4: end function

A
WV

q(-)




Exponential Mechanism

%

.

Exponential Mechanism:

ME('CE:U) R)
return » € R with prob.

exp(ZLr))

eu(z,r’)
ZT‘,ER exp( 2Au

)
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Global Sensitivity

p
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — R is:
Ag = max{|q(D) — q(D")| ‘ D~y D € X"}

q(bu{x}) q(bu{y})




Local sensitivity

p
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — R is:
Ag = max{|q(D) — q(D")| ’ D~ D' € X"}

Definition 1.14 (Local sensitivity). The local sensitivity of a function
qg: X" —>Rat D e A" is:

(Aq(D) = max {|‘I(D) —q(D")| ‘ D~ D', D' e Xn}




Calibrating noise to the local
sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have LS(D)=0 but that we
also have D~D’ with LS(D")=109.




Some methods

* SMooth Sensitivity
* Propose- lest-Release
* Releasing Stable Values
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Smooth Sensitivity

4 )
Definition 2.2 (Smooth sensitivity). For 3 > 0, the 3-smooth sensitivity of f is
- e - —ﬂd(x!y)
St 5(x) L (LSf(y) € ) :
_ J

4 N

Definition 2.1 (A Smooth Bound on LS). For 3 > 0, a function S : D™ — R is a 3-smooth upper bound
on the local sensitivity of [ if it satisfies the following requirements:

Y e D" : S(x) = LS¢(x) ; (1)
Ve, y € D", d(x,y) =1: S(z) < e’ S(y) . (2)
_ _J

[Nissim, Raskhodnikova, Smith '06]
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Admissible Noise

Definition 2.5 (Admissible Noise Distribution). A probability distribution on RY, given by a density func-
tion h, is (v, 3)-admissible (with respect to (1) if, for a = ale, 8), 3 = (e, d), the following two conditions
hold for all A € RY and X € R satisfying |Al|; < o and |\ < 3, and for all measurable subsets S C R4:

Sliding Property: Pr [Z € S] <ez- Pr [Z eSS+ A] + % :
Z~h Z~h
Dilation Property: ZPr’ [Z = S] < e2 -ZPI} [Z € e -S] + % :

[Nissim, Raskhodnikova, Smith '06]



Calibrating noise to the 1
smooth sensitivity

e N

Lemma 2.6. Let h be an («, [3)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : D™ — R%, let S : D™ — R be a 3-smooth upper bound

on the local sensitivity of f. Then algorithm A(x) = f(x) + ‘ﬂaﬂ - Z is (e, 0)-differentially private.
\_ J
For two neighbor databases 2 and y, the output distribution .A(y) is a shifted and scaled version of A(x).

The sliding and dilation properties ensure that Pr[A(z) € S] and Pr[A(y) € S] are close for all sets S of
outputs.

[Nissim, Raskhodnikova, Smith '06]
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Admissible Noise

[Adding noise O(SS;(z)/z) (according to a Cauchy distribution) is sufficient for e-differential J
privacy.

zq =0, v=0.5
—_— =0, 7=1
0.5} -, =0, y=2

B =-2,.v=1 )

Laplace and Gauss give (€,0)-DP

Computing the Smooth Sensitivity can be intractable.
[Nissim, Raskhodnikova, Smith '06]
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Propose lest Release

(

Propose-test-release Given ¢ : X" - R, ¢,0,3 >0
1. Propose a target bound 3 on local sensitivity.
2. Let d = d(z, {2 : LS,(z") > 8}) + Lap(1/¢), where d denotes Hamming distance.
3. If d < In(1/4) /e, output L.

4. If d > In(1/4) /e, output g(z) + Lap(8/¢).
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Propose Test Release

Proposition 3.2 (propose-test-release [33]). For every query q : X" — R and £,4, 3 = 0, the above
algorithm is (2z, 0)-differentially private.

Proof. Consider any two neighboring datasets = ~ 2’. Because of the Laplacian noise in the
definition of d and the fact that Hamming distance has global sensitivity at most 1, it follows that

Pr(M(z) = L] € [e7® - Pr[M(z") = L], ¢" - Pr[M(a") = L]]. (3)
Case 1: LS,(z) > 3. In this case, d(xz, {z" : LS,(z") > 5}) = 0, so the probability that d will
exceed In(1/4)/z is at most 4. Thus, for every set T'C R U {L}, we have:

Pr(M(z) € T Pr[M(x) € TN {L}] + Pr[M(z) # 1]
e -PrM(zy e Tn{L}]+d

e - Pr[M(z") € T] + 4,

IA A TA

where the second inequality follows from (3), noting that 7N { L} equals either { L} or 0.

Case 2: LS,(z) < 3. In this case, |g(x)—g(z")| < 3, which in turn implies the (, 0)-indistinguishability
of g(x) + Lap(3/2) and ¢(z') + Lap(3/2). Thus, by (3) and Basic Composition, we have (2=, 0)-
indistinguishability overall. O



Laplace Mechanism

(Accuracy Theorem: let r = LapMech(D, g, ¢)

Pr[lo(D) 1l > (S m (5)] = 6

€




