CSE660 Differential Privacy

November 27, 2017

Marco Gaboardi

Room: 338-B

<u>gaboardi@buffalo.edu</u>

http://www.buffalo.edu/~gaboardi

Differential privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: $X^n \to R$ is (ε, δ) -differentially private iff

for all adjacent database b_1 , b_2 and for every $S \subseteq R$:

 $Pr[Q(b_1) \in S] \leq exp(\mathcal{E})Pr[Q(b_2) \in S] + \delta$

Laplace Mechanism

Algorithm 2 Pseudo-code for the Laplace Mechanism

- 1: **function** LapMech (D, q, ϵ)
- 2: $Y \xleftarrow{\$} \mathsf{Lap}(\frac{\Delta q}{\epsilon})(0)$
- 3: **return** q(D) + Y
- 4: end function

Global Sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Local sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Definition 1.14 (Local sensitivity). The *local sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ at $D \in \mathcal{X}^n$ is:

$$\ell \Delta q(D) = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D', D' \in \mathcal{X}^n \right\}$$

Calibrating noise to the local sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have LS(D)=0 but that we also have $D\sim D'$ with $LS(D')=10^9$.

We will see that we can do anyway better than GS.

Some methods

- Smooth Sensitivity
- Propose-Test-Release
- Releasing Stable Values

Smooth Sensitivity

Definition 2.2 (Smooth sensitivity). For $\beta > 0$, the β -smooth sensitivity of f is

$$S_{f,\beta}^*(x) = \max_{y \in D^n} \left(LS_f(y) \cdot e^{-\beta d(x,y)} \right).$$

Definition 2.1 (A Smooth Bound on LS). For $\beta > 0$, a function $S: D^n \to \mathbb{R}^+$ is a β -smooth upper bound on the local sensitivity of f if it satisfies the following requirements:

$$\forall x \in D^n : S(x) \ge LS_f(x) ;$$
 (1)

$$\forall x, y \in D^n, d(x, y) = 1: \qquad S(x) \le e^{\beta} \cdot S(y). \tag{2}$$

Lemma 2.6. Let h be an (α, β) -admissible noise probability density function, and let Z be a fresh random variable sampled according to h. For a function $f: D^n \to \mathbb{R}^d$, let $S: D^n \to \mathbb{R}$ be a β -smooth upper bound on the local sensitivity of f. Then algorithm $A(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$ is (ϵ, δ) -differentially private.

For two neighbor databases x and y, the output distribution $\mathcal{A}(y)$ is a shifted and scaled version of $\mathcal{A}(x)$. The sliding and dilation properties ensure that $\Pr[\mathcal{A}(x) \in \mathcal{S}]$ and $\Pr[\mathcal{A}(y) \in \mathcal{S}]$ are close for all sets \mathcal{S} of outputs.

Admissible Noise

Adding noise $O(SS_q^{\varepsilon}(x)/\varepsilon)$ (according to a Cauchy distribution) is sufficient for ε -differential privacy.

Laplace and Gauss give (ε,δ) -DP

Computing the Smooth Sensitivity can be intractable.

[Nissim, Raskhodnikova, Smith '06]

Propose Test Release

Propose-test-release Given $q: \mathcal{X}^n \to \mathbb{R}, \ \epsilon, \delta, \beta \geq 0$

- 1. Propose a target bound β on local sensitivity.
- 2. Let $\hat{d} = d(x, \{x' : LS_q(x') > \beta\}) + Lap(1/\epsilon)$, where d denotes Hamming distance.
- 3. If $\hat{d} \leq \ln(1/\delta)/\varepsilon$, output \perp .
- 4. If $\hat{d} > \ln(1/\delta)/\varepsilon$, output $q(x) + \operatorname{Lap}(\beta/\varepsilon)$.

Stability-based algorithms

Releasing stable values Given $q: \mathcal{X}^n \to \mathbb{R}, \ \epsilon, \delta \geq 0$

- 1. Let $\hat{d} = d(x, \{x' : q(x') \neq q(x)\}) + \text{Lap}(1/\varepsilon)$, where d denotes Hamming distance.
- 2. If $\hat{d} \leq 1 + \ln(1/\delta)/\varepsilon$, output \perp .
- 3. Otherwise output q(x).

Proposition 3.3 (releasing stable values). For every query $q : X^n \to Y$ and $\varepsilon, \delta > 0$, the above algorithm is (ε, δ) -differentially private.

Stability-based algorithms

Consider, for example, the mode function $q: \mathcal{X}^n \to \mathcal{X}$, where q(x) is defined to be the most frequently occurring data item in x (breaking ties arbitrarily). Then $d(x, \{x': q(x') \neq q(x)\})$ equals half of the gap in the number of occurrences between the mode and the second-most frequently occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe \mathfrak{X} , $n \in \mathbb{N}$, $\varepsilon, \delta \geq 0$, there is an (ε, δ) -differentially private algorithm $\mathfrak{M}: \mathfrak{X}^n \to \mathfrak{X}$ such that for every dataset $x \in \mathfrak{X}^n$ where the difference between the number of occurrences of the mode and the 2nd most frequently occurring item is larger than $4\lceil \ln(1/\delta)/\varepsilon \rceil$, $\mathfrak{M}(x)$ outputs the mode of x with probability at least $1 - \delta$.

Stability-based Histogram

- 1. For every point $y \in \mathfrak{X}$:
 - (a) If $q_y(x) = 0$, then set $a_y = 0$.
 - (b) If $q_y(x) > 0$, then:
 - i. Set $a_y \leftarrow q_y(x) + \text{Lap}(2/\varepsilon n)$.
 - ii. If $a_y < 2\ln(2/\delta)/\varepsilon n + 1/n$, then set $a_y \leftarrow 0$.
- 2. Output $(a_y)_{y \in \mathcal{X}}$.

Stability-based Histogram

Utility: The algorithm gives exact answers for queries q_y where $q_y(x) = 0$. There are at most n queries q_y with $q_y(x) > 0$ (namely, ones where $y \in \{x_1, \ldots, x_n\}$). By the tails of the Laplace distribution and a union bound, with high probability all of the noisy answers $q_y(x) + \text{Lap}(2/\varepsilon n)$ computed in Step 1(b)i have error at most $O((\log n)/\varepsilon n) \le O(\log(1/\delta)/\varepsilon n)$. Truncating the small values to zero in Step 1(b)ii introduces an additional error of up to $2\ln(1/\delta)/\varepsilon n + 1/n = O(\log(1/\delta)/\varepsilon n)$.

Histogram

Accuracy with the standard histogram DP algorithm:

$$|q_h(D) - r_h| \le O\left(\frac{log(|\mathcal{X}|)}{n}\right)$$

Accuracy with the stable histogram DP algorithm:

$$|q_h(D) - r_h| \le O\left(\frac{\log(1/\delta)}{n}\right)$$

Sample and aggregate

Privacy Amplification by subsampling

Lemma 1.28 (Privacy amplification by subsampling). Let $\mathcal{M}: \mathcal{X}^m \to \mathcal{R}$ be an ϵ -differentially private mechanism for every $m \geq 1$. Let $\mathcal{S}: \mathcal{X}^n \to \mathcal{X}^{\gamma n}$ be a subsampling (without replacement) mechanism returning a i.i.d. subsample of the data points of size γn , for $\gamma < 1$. Then, the mechanism $\mathcal{M}' = \mathcal{M} \circ \mathcal{S}: \mathcal{X}^n \to \mathcal{R}$ is $2\gamma(e^{\epsilon} - e^{-\epsilon})$ -differentially private.