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Differential privacy

\

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &




Laplace Mechanism

i Algorithm 2 Pseudo-code for the Laplace Mechanism

\

1: function LAPMECH(D, g, €)
2 Y & Lap(&9)(0)

3 return ¢(D)+Y

4: end function

q(-)




Global Sensitivity

p
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — R is:
Ag = max{|q(D) — q(D")| ‘ D~y D € X"}

q(bu{x}) q(bu{y})




Local sensitivity

p
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — R is:
Ag = max{|q(D) — q(D")| ’ D~ D' € X"}

Definition 1.14 (Local sensitivity). The local sensitivity of a function
qg: X" —>Rat D e A" is:

(Aq(D) = max {|‘I(D) —q(D")| ‘ D~ D', D' e Xn}




Calibrating noise to the local
sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have LS(D)=0 but that we
also have D~D’ with LS(D")=109.




Some methods

* SMooth Sensitivity
* Propose- lest-Release
* Releasing Stable Values



Smooth Sensitivity

4 N
Definition 2.2 (Smooth sensitivity). For 3 > 0, the 3-smooth sensitivity of f is
X Al T) = ‘ - —,'f'}d(l'.y)
i i (LSf(y) € ) :
\ J
4 )

Definition 2.1 (A Smooth Bound on LS). For 3 > 0, a function S : D" — R is a 3-smooth upper bound
on the local sensitivity of [ if it satisfies the following requirements:

Yo € D" . S(x)

LS¢(z) ; (1)
Ve,y € D", d(x,y) =1: S(z) < e - S(y) . (2)
.

IA IV

_/

[Nissim, Raskhodnikova, Smith '06]



Calibrating noise to the >
smooth sensitivity

e N

Lemma 2.6. Let h be an («, [3)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : D™ — R%, let S : D™ — R be a 3-smooth upper bound

on the local sensitivity of f. Then algorithm A(x) = f(x) + ‘ﬂaﬂ - Z is (e, 0)-differentially private.
\_ J
For two neighbor databases 2 and y, the output distribution .A(y) is a shifted and scaled version of A(x).

The sliding and dilation properties ensure that Pr[A(z) € S] and Pr[A(y) € S] are close for all sets S of
outputs.

[Nissim, Raskhodnikova, Smith '06]



10

Admissible Noise

[Adding noise O(SS;(z)/z) (according to a Cauchy distribution) is sufficient for e-differential J
privacy.

zq =0, v=0.5
—_— =0, 7=1
0.5} -, =0, y=2

B =-2,.v=1 )

Laplace and Gauss give (€,0)-DP

Computing the Smooth Sensitivity can be intractable.
[Nissim, Raskhodnikova, Smith '06]



Propose lest Release

(

Propose-test-release Given ¢ : X" - R, ¢,0,3 >0

1. Propose a target bound 3 on local sensitivity.
2. Let d = d(z, {z' : LS,(z') > 8}) + Lap(1/¢), where d denotes Hamming distance.
3. If d < In(1/4) /e, output L.

4. If d > In(1/4) /e, output g(z) + Lap(8/¢).
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Stability-based algorithms

s N
Releasing stable values Given ¢ : X" — R, €,0 > 0

1. Let d = d(z, {z' : q(z) # q(x)}) + Lap(1/¢), where d denotes Hamming distance.
2. If d < 1+ In(1/6)/e, output L.

3. Otherwise output ¢(z).
. _/

Proposition 3.3 (releasing stable values). For every query q : X" — Y and £,6 > 0, the above
algorithm is (g, d)-differentially private.
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Stability-based algorithms

a )
Consider, for example, the mode function ¢ : X" — X, where g(x) is defined to be the most
frequently occurring data item in z (breaking ties arbitrarily). Then d(z, {2’ : q(z') # q(2)}) equals
half of the gap in the number of occurrences between the mode and the second-most frequently
occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe X, n € N, £, > 0, there is an
(g,0)-differentially private algorithm M : X" — X such that for every dataset x € X" where the
difference between the number of occurrences of the mode and the 2nd most frequently occurring

item 1s larger than 4[In(1/8) /=], M(x) outputs the mode of x with probability at least 1 — 4.
\ J
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Stability-based Histogram

- N
1. For every point y € X:

(a) If g,(x) = 0, then set a, = 0.
(b) If g,(x) > 0, then:
i. Set a, < qy(x) + Lap(2/en).
ii. If ay < 2In(2/0)/en + 1/n, then set a, < 0.

2. Output (ay)yex.

o /
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Stability-based Histogram

{Ttility: The algorithm gives exact answers for queries ¢, where g,(x) = 0. There are at most ;
queries ¢, with ¢,(z) > 0 (namely, ones where y € {x1,...,2,}). By the tails of the Laplace distri-
bution and a union bound, with high probability all of the noisy answers ¢, (x)+Lap(2/sn) computed
in Step 1(b)i have error at most O((logn)/zn) < O(log(1/d)/en). Truncating the small values to
7(01'0 in Step 1(b)ii introduces an additional error of up to 2In(1/9)/en + 1/n = O(log(1/9)/zn).




Histogram

fAccuracy with the standard histogram DP algorithm:

qn(D) — rh| < O <109(|X|))

n

.

fAccuracy with the stable histogram DP algorithm:

qn(D) — 11| < O (log(l/é))

n
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Sample and aggregate

/ +1/ \

LLyeeny | (k- DE+1- y L




Privacy Amplification by
subsampling

r p
Lemma 1.28 (Privacy amplification by subsampling). Let M : X — R
be an e-differentially private mechanism for every m > 1. Let § : A" —
X7 be a subsampling (without replacement) mechanism returning a
i.i.d. subsample of the data points of size yn, for v < 1. Then, the

\mechanism M =MoS8: X" = R is 2y(e — e ¢)-differentially private)




