CSE660 Differential Privacy

September 18, 2017

Marco Gaboardi

Room: 338-B

<u>gaboardi@buffalo.edu</u>

http://www.buffalo.edu/~gaboardi

(ε,δ)-Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \to R$ is (ε, δ) -differentially private iff

for all adjacent database b_1 , b_2 and for every $S \subseteq R$:

 $Pr[Q(b_1) \in S] \leq exp(\mathcal{E})Pr[Q(b_2) \in S] + \delta$

Randomized Response

Algorithm 1 Pseudo-code for Randomized Response

- 1: **function** RandomizedResponse (D, q, ϵ)
- 2: **for** $k \leftarrow 1$ to |D| **do**

3:
$$S_i \leftarrow \begin{cases} q(d_i) & \text{with probability } \frac{e^{\epsilon}}{1+e^{\epsilon}} \\ \neg q(d_i) & \text{with probability } \frac{1}{1+e^{\epsilon}} \end{cases}$$

- 4: end for
- 5: return $\frac{(\mathbf{sum} \ S)}{|D|}$
- 6: end function

Example

Let's consider a medical dataset containing informations on whether each patient has a disease.

We can have $q(d_i)=1$ if patient i has the disease and $q(d_i)=0$ otherwise.

We can use randomized response to estimate the proportion of patient that have the disease.

The noise that each individual adds protect his/her value.

Randomized Response

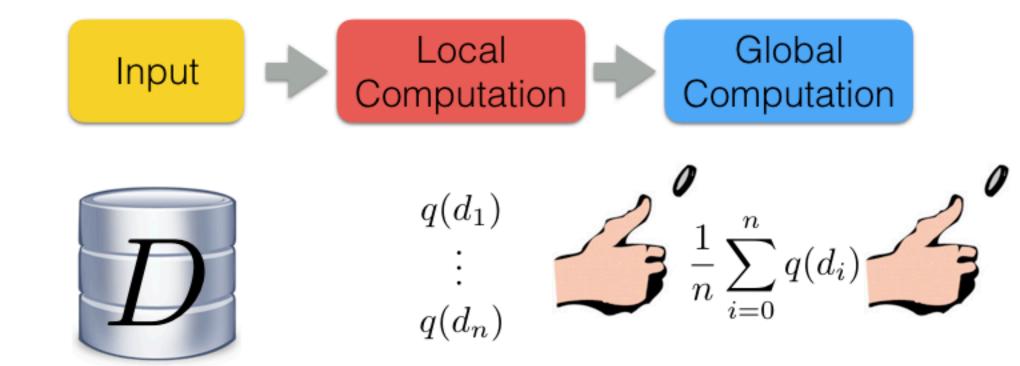
Privacy Theorem:

Randomized response is ϵ -differentially private.

Accuracy Theorem:

$$\Pr_{r \leftarrow RR(D,q,\epsilon)} \left[\left| \frac{1 + e^{\epsilon}}{e^{\epsilon} - 1} \left(r - \frac{1}{1 + e^{\epsilon}} \right) - q(D) \right| \ge \frac{1 + e^{\epsilon}}{(e^{\epsilon} - 1)} \sqrt{\frac{\log(2/\beta)}{2n}} \right] \le \beta$$

Noise on Input vs Noise on Output



Noise on the output

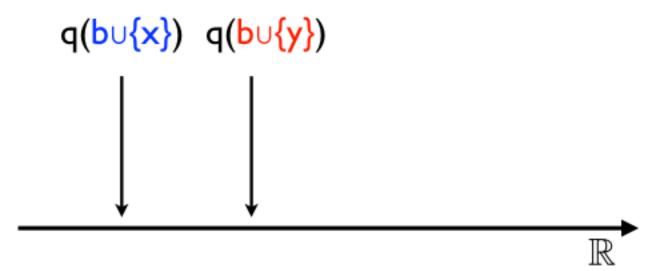
Question: What is a good way to add noise to the output of a statistical query?

Intuitive answer: it depends on ε or the accuracy we want to achieve, and on the scale that a change of an individual can have on the output.

Global Sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q: \mathcal{X}^n \to \mathbb{R}$ is:

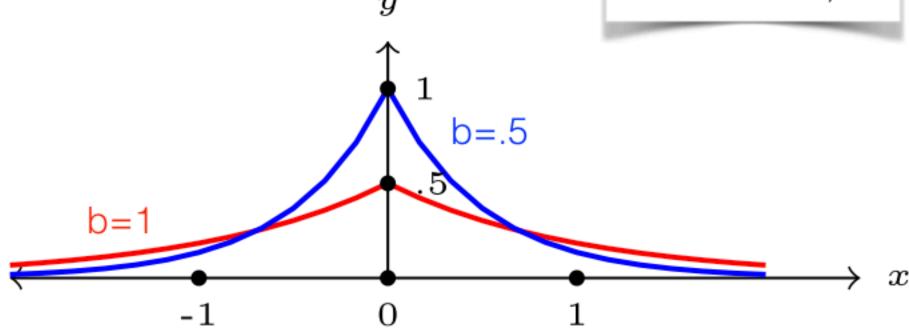
$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$



Laplace Distribution

$$\mathsf{Lap}(b,\mu)(X) = \frac{1}{2b} \exp\left(-\frac{|\mu - X|}{b}\right)$$

b regulates the skewness of the curve,



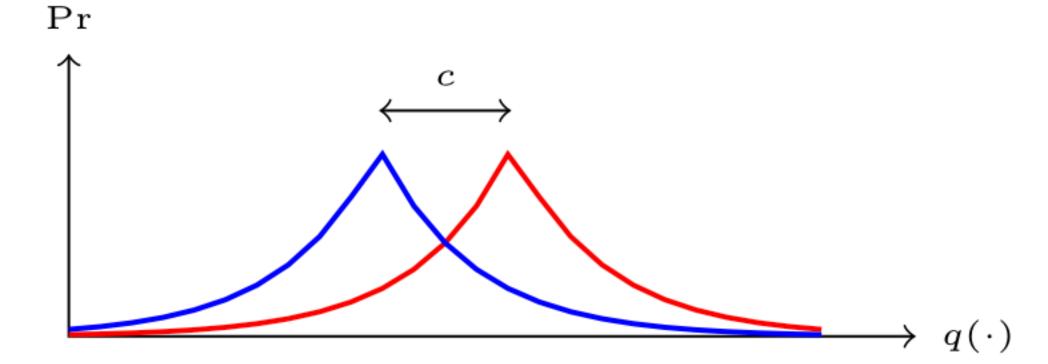
Algorithm 2 Pseudo-code for the Laplace Mechanism

- 1: **function** LapMech (D, q, ϵ)
- 2: $Y \xleftarrow{\$} \mathsf{Lap}(\frac{\Delta q}{\epsilon})(0)$
- 3: **return** q(D) + Y
- 4: end function

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is ε-differentially private.

Proof: Intuitively



Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is ε-differentially private.

Proof:

Consider $D \sim_1 D' \in \mathcal{X}^n$, $q: \mathcal{X}^n \to \mathbb{R}$, and let p and p' denote the probability density function of LapMech (D, q, ϵ) and LapMech (D', q, ϵ) . We compare them at an arbitrary point $z \in \mathbb{R}$.

$$\frac{p(z)}{p'(z)} = \frac{\exp\left(-\frac{\epsilon|q(D)-z|}{\Delta q}\right)}{\exp\left(-\frac{\epsilon|q(D')-z|}{\Delta q}\right)}$$

Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is ε-differentially private.

Continued proof:

$$\frac{p(z)}{p'(z)} = \frac{\exp\left(-\frac{\epsilon|q(D)-z|}{\Delta q}\right)}{\exp\left(-\frac{\epsilon|q(D')-z|}{\Delta q}\right)}$$

$$= \exp\left(\frac{\epsilon(|q(D')-z|-|q(D)-z|)}{\Delta q}\right)$$

$$\leq \exp\left(\frac{\epsilon(|q(D')-q(D)|)}{\Delta q}\right)$$

$$\leq \exp(\epsilon)$$

Similarly, we can prove that $\exp(-\epsilon) \leq \frac{p(z)}{p'(z)}$

•

Example Revisited

Let's consider again a medical dataset containing informations on whether each patient has a disease. We can have $q(d_i)=1$ if patient i has the disease and $q(d_i)=0$ otherwise.

We first compute the proportion of patients that have the disease. Notice that this has sensitivity 1/n.

Then we can add Laplace noise proportional to 1/ɛn.

The noise protects each individual value.

Question: How accurate is the answer that we get from the Laplace Mechanism?

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

This represents the variable measuring the difference between the noised answer and the non-noised one.

This is our alpha.

Notice that we express it in terms of beta.

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

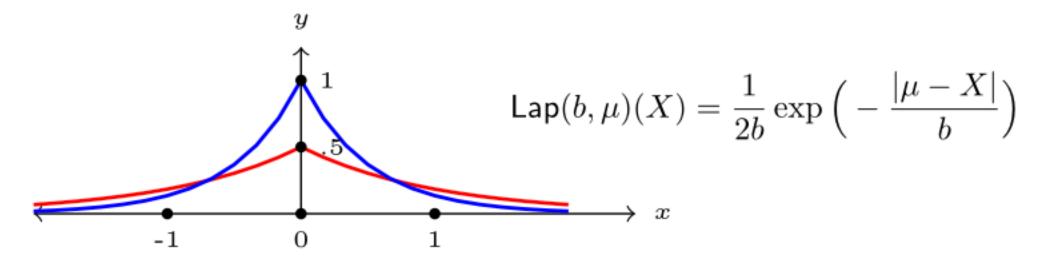
$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

Proof: By definition of the Laplace mechanism we have:

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \Pr\left[|Y| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right]$$

where Y is drawn from Lap($\Delta q/\epsilon$)(0)

Tail bound for the Laplace Distribution



$$\Pr\left[|X| \ge b\,t\right] = \exp(-t)$$

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

Continued proof: applying this bound we get:

$$\Pr\left[|Y| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \exp\left(-\ln\left(\frac{1}{\beta}\right)\right) = \beta$$

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

Intuitive reading: with high probability we have:

$$\left| q(D) - r \right| \le O\left(\frac{1}{n}\right)$$

Example revisited

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

Let's consider again the example of the medical dataset containing information on whether each patient has a disease or not $(q(d_i)=1 \text{ or } q(d_i)=0)$.

We can use the Laplace Mechanism to estimate the proportion of patients that have the disease.

We need to fix the parameters.

Example revisited

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

Let's fix the following values for the parameters:

n=1,000,000

$$\epsilon$$
=1
 β =0.05
 $\ln(\frac{1}{\beta}) = 2.99$

Question: What is the sensitivity?

$$\Delta q = 10^{-6}$$

Example revisited

Accuracy Theorem: let $r = \mathsf{LapMech}(D, q, \epsilon)$

$$\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$$

With this set of parameters we have with 95% confidence

$$r - 0.0000299 \le q(D) \le r + 0.0000299.$$

Randomized Response vs Laplace

Accuracy for Randomize response: with high probability

we have:

$$\left| r - q(D) \right| \le O\left(\frac{1}{\sqrt{n}}\right)$$

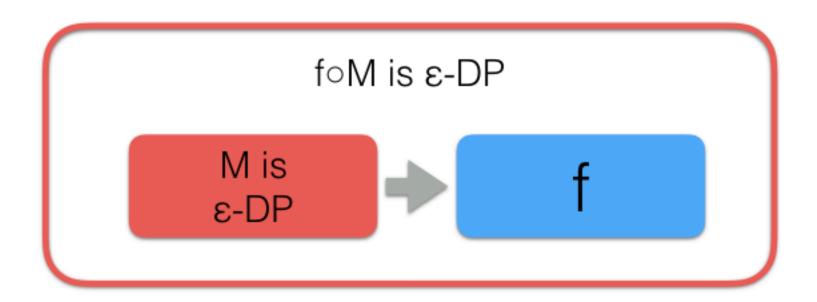
Accuracy for Laplace: with high probability we have:

$$\left| q(D) - r \right| \le O\left(\frac{1}{n}\right)$$

Some important properties

- Resilience to post-processing
- Group privacy
- Composition

Resilience to Post-processing



Proposition 1.1 (Post-processing). Let $\mathcal{M}: \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f: R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M}: \mathcal{X}^n \to R'$ is also ϵ -differentially private.

Proof. Fix any pair of neighboring databases $D \sim_1 D'$, and fix any event $S \subseteq R'$. Let $T = \{r \in R : f(r) \in S\}$. We have

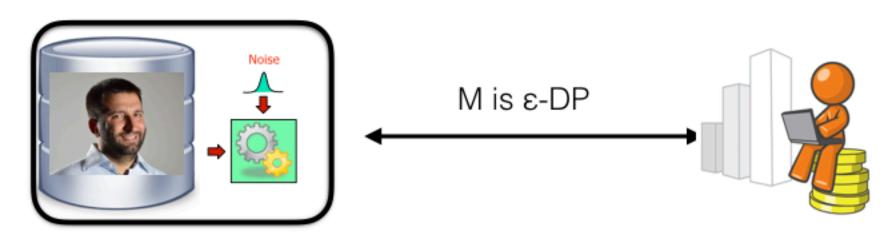
$$\Pr[f(\mathcal{M}(D)) \in S] = \Pr[\mathcal{M}(D) \in T]$$

$$\leq \exp(\epsilon) \Pr[\mathcal{M}(D') \in T]$$

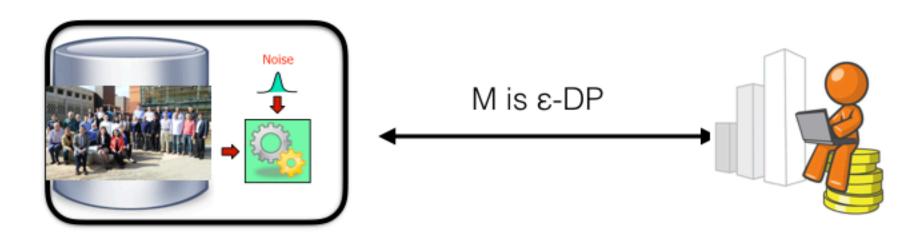
$$= \exp(\epsilon) \Pr[f(\mathcal{M}(D')) \in S]$$

Question: Why is resilience to post-processing important?

Answer: Because it is what allows us to publicly release the result of a differentially private analysis!



$$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$$



 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proposition 1.2 (Group Privacy). Let $\mathcal{M}: \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

$$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$$

Proof. Fix any pair of databases D, D' with $D\Delta D' \leq k$. Then, we have databases D_0, D_1, \ldots, D_k such that $D_0 = D, D_k = D'$ and $D_i \Delta D_{i+1} \leq 1$. Fix also any event $S \subseteq R'$. Then, we have have

$$\Pr[\mathcal{M}(D) \in S] = \Pr[\mathcal{M}(D_0) \in S]$$

$$\leq \exp(\epsilon) \Pr[\mathcal{M}(D_1) \in S]$$

$$\leq \exp(\epsilon) (\exp(\epsilon) \Pr[\mathcal{M}(D_2) \in S]) = \exp(2\epsilon) \Pr[\mathcal{M}(D_2) \in S]$$

$$\leq \cdots$$

$$\leq \exp(k\epsilon) \Pr[\mathcal{M}(D_k) \in S] = \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$$

Question: Why is group privacy important?

Answer: Because it allows to reason about privacy at different level of granularities!