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(€,0)-Differential Privacy

\

Definition

Given €£,0 2 0, a probabilistic query Q: X" = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &




Randomized Response

~

Algorithm 1 Pseudo-code for Randomized Response

1: function RANDOMIZEDRESPONSE(D, g, €)
9 for k < 1 to |D| do

N o { q(d;)  with probability l—T—eef
| ‘ —q(d;) with probability 5 -l}e‘-

4: end for

5: return (Sulrgl 5)

6: end function




Example

Let’s consider a medical dataset containing informations on
whether each patient has a disease.

We can have q(di)=1 if patient i has the disease and qg(di)=0
otherwise.

We can use randomized response to estimate the proportion
of patient that have the disease.

[The noise that each individual adds protect his/her value]




Randomized Response

Privacy Theorem:
Randomized response is g-differentially private.

‘Accu racy Theorem:

e, 1 1+ e [loa(2/8)
Pr — —q(D)| > <
r(—RR(lD,q,e) [ e —1 ( 1+ 66) Q( )‘ o (6€ — 1) 2n ] <P
\ J




Noise on Input vs Noise on Output

) »

\—/ q(dy) . .

\’i B f % % > q(di) %
Q(dn) +=0

T




Noise on the output

2 )

Intuitive answer: it depends on € or the accuracy we
want to achieve, and on the scale that a change of an
iIndividual can have on the output.

. /




Global Sensitivity

p
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — R is:
Ag = max{|q(D) — q(D")| | D~y D € X"}

q(bu{x}) q(bu{y})




Laplace Distribution

1 — X
Lap(b, u)(X) = o exp ( N I |) b regulates the

b skewness of

the curve,




Laplace Mechanism

Algorithm 2 Pseudo-code for the Laplace Mechanism

1: function LAPMECH(D, g, €)
2 Y & Lap(29)(0)

3k return ¢(D) +Y

4: end function




Laplace Mechanism

4 )
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private. )

Proof: Intuitively
Pr

/N

AN
2\

q(-)



Laplace Mechanism

g
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is e-differentially private.

o

Proof:
Consider D ~1 D" € X™, g : X™ — R, and let p and p’ denote the
probability density function of LapMech(D, g, ¢) and LapMech(D’, ¢, €)

We compare them at an arbitrary point z € R.

p(2) B exp ( _ 6|(1(§C)I—z|)

p(z) exp ( _ 6|(1(1‘2’q)—»’5|>




Laplace Mechanism

p
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is e-differentially private.

o

: exp ( _ eIq(D)—zl)
Continued proof: p(z) _ Aq
P(2)  exp (— deBi=l)
€(lg(D") — z[ —[q¢(D) — ZI)>

-




Example Revisited

Let's consider again a medical dataset containing
informations on whether each patient has a disease.
We can have q(di)=1 if patient i has the disease and qg(di)=0

otherwise.

We first compute the proportion of patients that have the
disease. Notice that this has sensitivity 1/n.

Then we can add Laplace noise proportional to 1/en.

{ The noise protects each individual value. J




Laplace Mechanism




Laplace Mechanism

fAccuracy Theorem: let r = LapMech(D, g, ¢)

Pr[lo(D) =1l = (S m (5)] = 6

\ € p
This represents the This is our alpha.
variable measuring the Notice that we
difference between the express it In terms
noised answer and the of beta.

R — —

non-noised one.

—




Laplace Mechanism

fAccuracy Theorem: let r = LapMech(D, g, ¢)

Pr D) =+l (1) (5)] =5

o

Proof: By definition of the Laplace mechanism we have:

Pr [|q(D) —r| > (A€q> In (;)] = Pr [|Y| > (A6q> In (;)]
where Y is drawn from Lap(Ag/e)(0)



Tail bound for the Laplace
Distribution

1

Pr

1X| > bt

1

Lap(b, 1) (X) = o exp ( -

- 2b

€T

= exp(—t)

=X

b

)



Laplace Mechanism

fAccuracy Theorem: let r = LapMech(D, g, ¢)

Pr D) =+l (1) (5)] =5

o

Continued proof: applying this bound we get:

o1 (30 (3)] <o (-1 (3)) =



Laplace Mechanism

fAccuracy Theorem: let » = LapMech(D, ¢, ¢€)

Pr [Jo(D) - | > () n (5)] = 8

o

Intuitive reading: with high probability we have:

oo <0 (1)




Example revisited

fAccuracy Theorem: let r = LapMech(D, g, ¢)

Pr [Jo(D) - | > () n (5)] = 5

€

o

Let’s consider again the example of the medical dataset

containing information on whether each patient has a disease

or not (q(di)=1 or g(d;)=0).

We can use the Laplace Mechanism to estimate the
proportion of patients that have the disease.
We need to fix the parameters.



Example revisited

(Accuracy Theorem: let » = LapMech(D, q, ¢€)
Pr (D) - | > () n (5)] = 5

_et’s fix the following values for the parameters:

n=1,000,000
e=1
3=0.05

In(%) = 2.99
[ Ag = 107° ]

B




Example revisited

fAccuracy Theorem: let r = LapMech(D, g, ¢)

oz () ()] =

With this set of parameters we have with 95% confidence

r — 0.0000299 < ¢(D) < r + 0.0000299.



Randomized Response

vs Laplace
(Accuracy for Randomize response: with high probability\
we have: 1
r—q(D ) < O(—)

J

" Accuracy for Laplace: with high probability we have:

o) +| <o}

\
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Some important properties

e Resilience to post-processing
e (Group privacy
e Composition
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Resilience to Post-processing

foM is e-DP

SRS~
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Resilience to Post-processin

r

N
Proposition 1.1 (Post-processing). Let M : XY™ — R be a randomized
algorithm that is e-differentially private. Let f : R — R’ be an arbitrary

deterministic mapping. Then fo M : X" — R’ is also e-differentially
private.

o _/

Proof. Fix any pair of neighboring databases D ~; D', and fix any
event S C R'. Let T ={r e R: f(r) € S}. We have

Prlf(M(D)) e S] = PrM(D)eT]
exp(e)PrM(D") € T|
exp(e) Pr(f(M(D")) € 5]

VA
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Resilience to Post-processing

[ Answer: Because it is what allows us to publicly J

release the result of a differentially private analysis!




Group Privacy

M is e-DP

29



Group Privacy

M is e-DP
G——)

Pr[M(D) € S] < exp(ke) Pr[M(D") € S]

30
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Group Privacy

Proposition 1.2 (Group Privacy). Let M : X" — R be a randomized
algorithm that is e-differentially private. Then, M is ke-differentially

private for groups of size k. That is, for datasets D, D' € X™ such that
DAD' < k and for all S C R we have

" Pr[M(D) € S| < exp(ke) Pr[M(D') € S| y

Proof. Fix any pair of databases D, D' with DAD’ < k. Then, we have
databases Dgy, D1, ..., Dy such that Dy = D, D), = D' and D;AD; 1 <
1. Fix also any event S C R’. Then, we have have

Pr[M(D) € S] Pr[M(Dy) € 5]

exp(e) PrlM(Dy) € S|

exp(e)(exp(e) PrM(Ds) € S]) = exp(2¢) Pr[M(D3) € S|

IA A IA IA

exp(ke) Pr[M(D}.) € S| = exp(ke) PrM(D') € S|
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Group Privacy

Answer: Because it allows to reason about privacy
at different level of granularities!




