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QOutline of the class

Week 1

Introduction, motivation and privacy limitations. Definition of
Differential Privacy and the curator model.

Week 2

Basic mechanisms: Randomized Response, Laplace Mechanism,
Week 3

Basic properties following from the definition, Exponential
Mechanism and comparison with the other basic mechanisms.
Week 4

The Report Noisy max algorithm. The Sparse Vector technique.
Week 5

Formalizing privacy proofs using an approximate probabilistic
coupling argument.

Releasing Many Counting Queries with Correlated Noise. The
smallDB algorithm.

Week 6
The MWEM algorithm. The DualQuery algorithm.



QOutline of the class

Week 8
Studying the experimental accuracy. Adaptivity and adaptive MWEM.

Week 7
Variations on differential privacy: Renyi DP, zero-concentrated DP

Week 9

PAC learning and private PAC learning
Week 10

The local model for differential privacy.
Week 11

More algorithms for the local model.
Week 12

Differentially Private Hypothesis Testing
Week 13

Differential Privacy and Generalization in Adaptive Data Analysis
Week 14

Project presentations



(€,0)-Differential Privacy

\

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &
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Some important properties

e Resilience to post-processing
e (Group privacy
e Composition



Composition
My Is €1-DP

« Mo is €2-DP X
Mhn Is en-DP

[ The overall process is (e1+€2+...+€n)-DP J




Composition




Example |l :

Let’s consider an arbitrary universe domain A and let’s consider
the following predicate for y € X

1 ify==x
qy(a:) N { 0 otherwise

we call a point function the associated counting query

qy: X" — [0, 1]
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Example Il | e

D1 D2 D3
I 0 0 0
12 1 0 1
I3 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
17 1 1 0
18 0 0 0
19 0 1 0
110 1 0 1

000 001 010 011 100 101 110 111
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D1 D2 D3
I 0 0 0
12 1 0 1
I3 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
17 1 1 0
18 0 0 0
19 0 1 0
110 1 0 1

000 001 010 011 100 101 110 111



DP Histograms o Hall, Ma 12
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Algorithm 7 Pseudo-code for Histogram

1: function HISTOGRAM(D, ¢)

2 fori<1,...,|X| do

3 My, (D) < LapMech(D, g, €)
4: end for
5
6:

return H
end function
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Proof. Fix any pair of adjacent datasets D ~; D’ and consider
the answer to the point function queries on the two datasets:
Gy (D), -+, Gy (D) and gy, (D), ..., qy ., (D'), respectively. It is im-
mediate to see that since D and D’ differ only in one position, there will
be two elements y and y’ for which ¢, (D) # ¢,(D’) and ¢,/ (D) # ¢, (D")
while for every other elements the results of the point function queries
will be the same.



DP Histograms = ha, s
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Now, let’s fix a possible output (rq,...,7x). We have:

Pr[M(D) = (ry, ..., rx|)] _ ]_[l;:ll Pr(M,, (D) = r;]
PrM(D') = (r1,....ma)] 11X Prim,, (D) = 1]

Using the observation above we have

[1,2) Pr{My, (D) = 1] _ Pr[M,(D) = r,] Pr{My (D) = r,]
1] PriM,, (D) = 7] PriMy(D) = ry|PrM, (D) = ry]

B (Pr[Ml(D) =) )(Pr[Mg(D) = 19| )

N PI‘[Ml(D') = 7‘1] PI‘[MQ(D') = 7‘2]

< exp(e) exp(e) = exp(2e).
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Composition
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Mechanisms




Laplace Mechanism

(" )
Theorem (Privacy of the Laplace Mechanism)

KThe Laplace mechanism is e-differentially private. )

Proof: Intuitively
Pr

/N

AN
2\

q(-)
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Another mechanism!?




Auctions
¥1M

¥1M

.

How shall we set the price under differential privacy?
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Max response
c) (d)

Suppose that each one of us can vote for one star,
and we want to say who is the star that receives
most votes.

4 N
The answer here is not a number, how can we release it
under differential privacy?

J




Differentially private selection

e \We want to select some element that
maximize some value,

e The noise added for privacy should not
destroy the utility,

e |[f we cannot return the maximal one,
with high probability, we want to return
one close to It.
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Max response

0.5

Intuition:

We could compute the
histogram add Laplace

noise to each score and then
select the maximal noised score.

0.375

0.25

0.125




Report Noisy Max

Algorithm 8 Pseudo-code for Report Noisy Max

1: function RNM(D, q1,...,¢m, €)
2 fori< 1,...,m do

3 ¢; + LapMech(D, ¢, €)

4: end for

5 return argmax;c;

6: end function

23
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Report Noisy Max
| Theorem 112 Theslgrh RN i ey it

Proof. Fix D ~ D', and ¢ = ¢(D) and ¢ = ¢(D’) be the results of the
counting queries in the two cases. For simplicity we assume that ¢ and
¢’ have the following properties.

° i) Vj,c; = ¢

o ii) Vj,%+c;- > ¢
The general case is a little more involved but overall similar.

Let’s now fix 7, we want to bound the ratio of the probability that 2
is selected when running RNM on D and D’. Now let 7; be the noise

drawn from Laplace for the round j and r_; be the noise drawn from
Laplace for all the rounds except the i-th one.
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Report Noisy Max
| Theorem L2 The gt RN i ey it

We first argue that Pr[i|D,r_;] < e® Pr[i|D’,r_;]. Define
r =min : ¢; +71; > ¢ +7; Vi # 1.
Note that, having fixed r_;, ¢ will be the output (the argmax noisy

count) when the database is D if and only if r; > r*.
We have, for all 1 < 7 #i < m:

ci+rt>ci+r
= (L+c)+r">ci+r" >ci+rj>c+r;
=+ (r"+1) > ¢ + ;.
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Report Noisy Max
 Theorem L12. The st M i ity proe.

Thus, if r; > r* + 1, then the ith count will be the maximum when the
database is D’ and the noise vector is (r;,7_;). The probabilities below
are over the choice of r; ~ Lap(1/¢).

Prr; > 14 7r%] > e “Pr[r; > r*| = e ° Pr[i| D, r_;]
= Pr[i|D',r_;] > Pr[r; > 1+ 7r*] > e “Pr[r; > r*| = e * Pr[i|D,r_;],

which, after multiplying through by e, yields what we wanted to show:
Prl[i|D,r_;] < e Pr[i|D',r_;].
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Report Noisy Max
| Theorem L2 The gt RN i ey it

We now argue that Pr[i|D’,r_;| < e® Pr[i|D,r_;|. Define
r* = min : ¢ +1i > ¢+ Vi # i
Note that, having fixed r_;, 7 will be the output (argmax noisy count)
when the database is D’ if and only if r; > r*.
We have, for all 1 < 5 #£1 < m:
/ / .
c;+rt >+
=14+ +r" > 14+ +r;
=+ (" +1) > (1+) +7;
S+ +1) 2+ +1) > (1+)+71;>c¢5+7j.
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Report Noisy Max
| Theorem L2 The gt RN i ey it

Thus, if r; > r* 4+ 1, then i will be the output (the argmax noisy

count) on database D with randomness (r;,7—;). We therefore have,
with probabilities taken over choice of r;:

Prli|D,r_;] > Pr[r; > r* + 1] > e ¢ Pr[r; > r*] = e * Pr[i| D', r_;],

which, after multiplying through by e, yvields what we wanted to show:
Pr[i| D', r_;] < e Prli|D,r_;]. O
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Exponential Mechanism

The Exponential Mechanism generalize this approach.

Suppose that we have a scoring function u(D,0) that to

each pair (database, potential output) assign a score
(a negative real number).

We want to output approximately the element with the
max score.



Exponential Mechanism

-

.

Exponential Mechanism:

ME(ZE, u, R)
return » € R with prob.

exp(ZLr))

eu(z,r’)
ZT‘,ER exp( 2Au )

where

Au = max max
reR x~1y

u(x,r) —u(y,r)
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