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Outline of the class
Week 1 
Introduction, motivation and privacy limitations. Definition of 
Differential Privacy and the curator model. 
Week 2 
Basic mechanisms: Randomized Response, Laplace Mechanism, 
Week 3 
Basic properties following from the definition, Exponential 
Mechanism and comparison with the other basic mechanisms.
Week 4
The Report Noisy max algorithm. The Sparse Vector technique. 
Week 5 
Formalizing privacy proofs using an approximate probabilistic 
coupling argument.
Releasing Many Counting Queries with Correlated Noise. The 
smallDB algorithm. 
Week 6 
The MWEM algorithm. The DualQuery algorithm.



Outline of the class
Week 8
Studying the experimental accuracy. Adaptivity and adaptive MWEM.
Week 7
Variations on differential privacy: Renyi DP, zero-concentrated DP
Week 9  
PAC learning and private PAC learning
Week 10
The local model for differential privacy. 
Week 11
More algorithms for the local model.
Week 12
Differentially Private Hypothesis Testing 
Week 13
Differential Privacy and Generalization in Adaptive Data Analysis
Week 14
Project presentations 



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy
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USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP 
M2 is ε2-DP 

…
Mn is εn-DP 

The overall process is (ε1+ε2+…+εn)-DP 
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We always need to think before applying 
composition to whether we have other options!

Composition
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Question: how much perturbation do we have if 
we want to answer n queries under ε-DP?

Multiple queries



Reconstruction attack with 
polynomial adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E=o(√n) perturbation. Then 
we can show M blatantly non-private against 
an adversary A running in polynomial time and 
answering n queries.

[DinurNissim’02, DworkYekhanin’08]
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Laplace accuracy: with high probability we have:
���q(D)� r

���  O
⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏
global

n

Multiple queries
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

By putting them together (hiding some details) we have as a 
max error

O
⇣ n

✏
global

n

⌘
= O

⇣ 1

✏
global

⌘

Notice that if we don’t renormalize this is of the order of
O
⇣ n

✏
global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.

Multiple queries
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Question: how many counting queries can we 
answer with small error under εglobal-DP?

Let’s now target an error similar to sample error. How many 
queries we can answer? 
If we want a non-normalized error of: 

we can answer at most √n queries. 

O
⇣ p

n

✏
global

⌘

Multiple queries
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Question: Can we do better?

Multiple queries
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Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

Multiple queries



If we don’t renormalize this is of the order of

comparable to the sample error.
O
⇣ p

n

✏
global

⌘
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Advanced Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O
⇣ 1

✏
global

p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]



15

Question: How about non-numeric data?

Mechanisms
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Exponential Mechanism

The Exponential Mechanism generalize this approach. 

Suppose that we have a scoring function u(D,o) that to 
each pair (database, potential output) assign a score 
(a negative real number).  

We want to output approximately the element with the 
max score.
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Exponential Mechanism

Exponential Mechanism:

return               with prob.

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ∥x − y∥1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =

(
exp( εu(x,r)

2∆u )∑
r′∈R exp( εu(x,r′)

2∆u )

)

(
exp( εu(y,r)

2∆u )∑
r′∈R exp( εu(y,r′)

2∆u )

)

=
(

exp(εu(x,r)
2∆u )

exp(εu(y,r)
2∆u )

)

·

⎛

⎝
∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

= exp
(

ε(u(x, r′) − u(y, r′))
2∆u

)

·

⎛

⎝
∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

≤ exp
(

ε

2

)
· exp

(
ε

2

)
·

⎛

⎝
∑

r′∈R exp(εu(x,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

= exp(ε).

Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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�u = max

r2R
max

x⇠1y

���u(x, r)� u(y, r)

���
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Exponential Mechanism

Privacy theorem:
The Exponential Mechanism is differentially private.

The proof is very similar to the one for the Laplace Mechanism.
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Exponential Mechanism

Privacy theorem:
The Exponential Mechanism is differentially private.

Continuing
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Here we change y with x by 
paying exp(ε/2).



20
Exponential Mechanism

Exponential Mechanism Accuracy theorem:
Let                                       . Then 

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ∥x − y∥1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =

(
exp( εu(x,r)

2∆u )∑
r′∈R exp( εu(x,r′)

2∆u )

)

(
exp( εu(y,r)

2∆u )∑
r′∈R exp( εu(y,r′)

2∆u )

)

=
(

exp(εu(x,r)
2∆u )

exp(εu(y,r)
2∆u )

)

·

⎛

⎝
∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

= exp
(

ε(u(x, r′) − u(y, r′))
2∆u

)

·

⎛

⎝
∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

≤ exp
(

ε

2

)
· exp

(
ε

2

)
·

⎛

⎝
∑

r′∈R exp(εu(x,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )

⎞

⎠

= exp(ε).

Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score

Pr
h
OPTu(x)� u(x,ME(x, u,R)) �

⇣2�u

✏

⌘
ln

⇣ |R|
�

⌘i
 �

250 Basic Techniques and Composition Theorems

OPTu(x). Then:
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u(ME(x, u, R)) ≤ OPTu(x) − 2∆u

ε
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)
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Proof.

Pr[u(ME(x, u, R)) ≤ c] ≤ |R| exp(εc/2∆u)
|ROPT| exp(εOPTu(x)/2∆u)

= |R|
|ROPT|

exp
(

ε(c − OPTu(x))
2∆u

)
.

The inequality follows from the observation that each r ∈ R
with u(x, r) ≤ c has un-normalized probability mass at most
exp(εc/2∆u), and hence the entire set of such “bad” elements r has
total un-normalized probability mass at most |R| exp(εc/2∆u). In
contrast, we know that there exist at least |ROPT| ≥ 1 elements
with u(x, r) = OPTu(x), and hence un-normalized probability mass
exp(εOPTu(x)/2∆u), and so this is a lower bound on the normalization
term.

The theorem follows from plugging in the appropriate value
for c.

Since we always have |ROPT| ≥ 1, we can more commonly make
use of the following simple corollary:

Corollary 3.12. Fixing a database x, we have:

Pr
[
u(ME(x, u, R)) ≤ OPTu(x) − 2∆u

ε
(ln (|R|) + t)

]
≤ e−t

As seen in the proofs of Theorem 3.11 and Corollary 3.12, the Expo-
nential Mechanism can be particularly easy to analyze.

Example 3.6 (Best of Two). Consider the simple question of determin-
ing which of exactly two medical conditions A and B is more common.
Let the two true counts be 0 for condition A and c > 0 for condition B.
Our notion of utility will be tied to the actual counts, so that conditions
with bigger counts have higher utility and ∆u = 1. Thus, the utility
of A is 0 and the utility of B is c. Using the Exponential Mechanism

It follows from this lemma
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Laplace Accuracy Theorem:  

1.7. The Laplace mechanism 17

Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:

Lemma 1.5 (Tail bound for the Laplace Distribution). If Z is drawn from
Lap
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Using this property we can then prove a result about the accuracy
of the Laplace mechanism.

Theorem 1.6 (Accuracy of the Laplace mechanism). Let q : X n æ R,
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The above theorem tell us that for a counting query q : X n æ R
with high probability the Laplace mechanism will output a value r such
that: ---q(D) ≠ r

--- Æ O
1 1

‘n

2
(1.2)

which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.

Example 1.2. Let’s consider again a medical dataset containing infor-
mation on whether a given patient has a disease or not. Now we want
to use LapMech to approximately compute the proportion of patients
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Let’s compare it with the accuracy of the Laplace Mechanism.

Here we have 
a dependency on 

the size of the 
output space
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The Exponential Mechanism is a very general 
mechanism. It can actually be used as a kind of 
universal mechanism. 

Unfortunately, when the output space is big it can be 
very costly to sample from it - the best option is to 
enumerate all the possibilities. 

Moreover, when the output space is big also the 
accuracy get worse.


