CSE660 Differential Privacy September 27, 2017

Marco Gaboardi Room: 338-B gaboardi@buffalo.edu http://www.buffalo.edu/~gaboardi

Outline of the class

Week 1

Introduction, motivation and privacy limitations. Definition of Differential Privacy and the curator model.

Week 2

Basic mechanisms: Randomized Response, Laplace Mechanism,

Week 3

Basic properties following from the definition, Exponential

Mechanism and comparison with the other basic mechanisms.

Week 4

The Report Noisy max algorithm. The Sparse Vector technique. *Week 5*

Formalizing privacy proofs using an approximate probabilistic coupling argument.

Releasing Many Counting Queries with Correlated Noise. The smallDB algorithm.

Week 6

The MWEM algorithm. The DualQuery algorithm.

Outline of the class

Week 8

Studying the experimental accuracy. Adaptivity and adaptive MWEM. *Week 7*

Variations on differential privacy: Renyi DP, zero-concentrated DP

Week 9

PAC learning and private PAC learning

Week 10

The local model for differential privacy.

Week 11

More algorithms for the local model.

Week 12

Differentially Private Hypothesis Testing

Week 13

Differential Privacy and Generalization in Adaptive Data Analysis *Week 14*

Project presentations

(ϵ, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Composition

The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n)$ -DP

Composition

We always need to think before applying composition to whether we have other options!

Question: how much perturbation do we have if we want to answer n queries under ε-DP?

Reconstruction attack with⁸ polynomial adversary

Let $M:\{0,1\}^n \rightarrow R$ be a privacy mechanism adding noise within $E=o(\sqrt{n})$ perturbation. Then we can show M blatantly non-private against an adversary A running in polynomial time and answering n queries.

[DinurNissim'02, DworkYekhanin'08]

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

We can split the privacy budget uniformly:

$$\epsilon = rac{\epsilon_{\mathsf{global}}}{n}$$

Laplace accuracy: with high probability we have: $\left|q(D) - r\right| \leq O\left(\frac{1}{\epsilon n}\right)$

10

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

By putting them together (hiding some details) we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Notice that if we don't renormalize this is of the order of $O\left(\frac{n}{\epsilon_{\text{global}}}\right)$ bigger than the sample error.

Question: how many counting queries can we answer with small error under \mathcal{E}_{global} -DP?

Let's now target an error similar to sample error. How many queries we can answer?

If we want a non-normalized error of:

$$O\!\left(\frac{\sqrt{n}}{\epsilon_{\mathsf{global}}}\right)$$

we can answer at most \sqrt{n} queries.

Question: Can we do better?

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

Advanced Composition

14

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of $O\Big(\frac{\sqrt{n}}{\epsilon_{\rm global}}\Big)$ comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]

Mechanisms

Question: How about non-numeric data?

The Exponential Mechanism generalize this approach.

Suppose that we have a scoring function u(D,o) that to each pair (database, potential output) assign a score (a negative real number).

We want to output approximately the element with the max score.

where

$$\Delta u = \max_{r \in \mathcal{R}} \max_{x \sim 1} \left| u(x, r) - u(y, r) \right|$$

Privacy theorem:

The Exponential Mechanism is differentially private.

The proof is very similar to the one for the Laplace Mechanism.

$$\frac{\Pr[\mathcal{M}_E(x, u, \mathcal{R}) = r]}{\Pr[\mathcal{M}_E(y, u, \mathcal{R}) = r]} = \frac{\left(\frac{\exp(\frac{\varepsilon u(x, r)}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(x, r')}{2\Delta u})}\right)}{\left(\frac{\exp(\frac{\varepsilon u(y, r)}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(y, r')}{2\Delta u})}\right)}$$
$$= \left(\frac{\exp(\frac{\varepsilon u(x, r)}{2\Delta u})}{\exp(\frac{\varepsilon u(y, r)}{2\Delta u})}\right) \cdot \left(\frac{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(y, r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(x, r')}{2\Delta u})}\right)$$
$$= \exp\left(\frac{\varepsilon(u(x, r') - u(y, r'))}{2\Delta u}\right) \cdot \left(\frac{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(y, r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(x, r')}{2\Delta u})}\right)$$

Privacy theorem:

The Exponential Mechanism is differentially private.

Continuing $= \exp\left(\frac{\varepsilon(u(x,r') - u(y,r'))}{2\Delta u}\right) \cdot \left(\frac{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon(y,r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon(x,r')}{2\Delta u})}\right)$ $\leq \exp\left(\frac{\varepsilon}{2}\right) \cdot \exp\left(\frac{\varepsilon}{2}\right) \left(\frac{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon(x,r')}{2\Delta u})}{\sum_{r' \in \mathcal{R}} \exp(\frac{\varepsilon u(x,r')}{2\Delta u})}\right)$ Here we change y with x by

paying $exp(\epsilon/2)$.

19

20

Exponential Mechanism Accuracy theorem:

Let
$$\operatorname{OPT}_{u}(x) = \max_{r \in \mathcal{R}} u(x, r)$$
. Then
 $\Pr\left[OPT_{u}(x) - u(x, \mathcal{M}_{E}(x, u, \mathcal{R})) \ge \left(\frac{2\Delta u}{\epsilon}\right) \ln\left(\frac{|\mathcal{R}|}{\beta}\right)\right] \le \beta$

It follows from this lemma

$$\Pr\left[u(\mathcal{M}_E(x, u, \mathcal{R})) \le \operatorname{OPT}_u(x) - \frac{2\Delta u}{\varepsilon} \left(\ln\left(\frac{|\mathcal{R}|}{|\mathcal{R}_{\operatorname{OPT}}|}\right) + t\right)\right] \le e^{-t}$$

Proof.

$$\Pr[u(\mathcal{M}_E(x, u, \mathcal{R})) \le c] \le \frac{|\mathcal{R}| \exp(\varepsilon c/2\Delta u)}{|\mathcal{R}_{OPT}| \exp(\varepsilon OPT_u(x)/2\Delta u)}$$
$$= \frac{|\mathcal{R}|}{|\mathcal{R}_{OPT}|} \exp\left(\frac{\varepsilon(c - OPT_u(x))}{2\Delta u}\right).$$

Let's compare it with the accuracy of the Laplace Mechanism.

Laplace Accuracy Theorem: let $r = \text{LapMech}(D, q, \epsilon)$ $\Pr\left[|q(D) - r| \ge \left(\frac{\Delta q}{\epsilon}\right) \ln\left(\frac{1}{\beta}\right)\right] = \beta$

The Exponential Mechanism is a very general mechanism. It can actually be used as a kind of universal mechanism.

Unfortunately, when the output space is big it can be very costly to sample from it - the best option is to enumerate all the possibilities.

Moreover, when the output space is big also the accuracy get worse.