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Project Ideas

Reimplementing the dualquery algorithm in Python
and test its accuracy,

Implement more involved algorithms for
reconstruction attacks (e.g. the one based on Fourier
transform),

Implement an heavy hitter algorithm in the local
model of differential privacy,

Using a differentially private deep learning tool on
different kinds of high dimensional data,
Implement a bayesian algorithm under differential
privacy.



(€,0)-Differential Privacy
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Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

PriQ(bi)e S] < exp(€)Pr[Q(b2)e S] + O




4

Exponential Mechanism

i Exponential Mechanism:
Meg(@,u, R) ox (su(x,r))
return » € R with prob. PRy
eu(x,r’)
Z’I"/ER eXp( 2Au )

where

Au = max max |u(x,r) — u(y,r)
reR x~1Yy



Exponential Mechanism

The Exponential Mechanism is a very general

mechanism. It can actually be used as a kind of
universal mechanism.

Unfortunately, when the output space is big it can be

very costly to sample from it - the best option is to
enumerate all the possibilities.

Moreover, when the output space is big also the
accuracy get worse.
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Composition
My is €4-DP
< >
Mo is €2-DP
< >
Mn is en-DP
< >

[ The overall process is (€1+€2+...+€n)-DP }
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Reconstruction attack with’
polynomial adversary

[DinurNissim’02, DworkYekhanin’08



Multiple queries

We can split the privacy budget uniformly:
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n

cE —



Multiple queries

We can split the privacy budget uniformly:

€global
n

cE —

Laplace accuracy: with high probability we have:

o) -] <0(2)

€N
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Advanced Composition

We have (by hiding many details) as a max error

v ( Eglobil \/ﬁ)

[DworkRothblumVadhan 10, SteinkeUllman |6
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Advanced Composition

We have (by hiding many details) as a max error

v ( Eglob: \/ﬁ)

(If we don’t renormalize this is of the order of

o( %)
€global
_.comparable to the sample error. )

[DworkRothblumVadhan 10, SteinkeUllman |6
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Composition




Sparse vector 3
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Sparse vector

SparseVector(D,q1,...,0n, 1,€)

< d1
a1 >

< d2
L >

< ds

ds
>

< dn

A1

How can we achieve epsilon-DP by paying
only for the queries above T7?

|3




A first step: above threshold
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An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries fi,..., and a threshold 7. Output is a
stream of responses aq, ...

AboveThreshold (D, {f;},T,e¢)

Let T =T +Lap ().
for Each query ¢ do
Let v; = Lap(2)
if fZ(D) +v; > T then
Output a; = T.
Halt.
else
Output a; = L.
end if
end for




An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries fi,..., and a threshold 7. Output is a
stream of responses aq, ...

AboveThreshold (D, {f;},T,e¢)

Le{ 7 =T + Lap (2))

for kach query » do
Let @ = Lap(%)'
if fZ(D) +v; > T then
Output a; = T.
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else
Output a; = L.
end if
end for




Reasoning by Composition
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Reasoning by Composition

qu X E/ZI->
g, X €/4
>

qu v €/
— >

In the worst case,
the data analysis is (ne/4,0)-DP




Can we do better?
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An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen

stream of sensitivity 1 queries fi,..., and a threshold 7. Output is a

stream of responses aq, ...

AboveThreshold(D, {f;},T,¢) 4 h
Le{T =T+ Lap (2)) < The threshola
for FEach query 7 do ISN’t priva’[e!

Let p; = Lap(%) \ J

if fZ(D) +v; > T then
Output a; = T.
Halt.
else
Output a; = L.
end if
end for
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4, X
< - >
q, X
< > S e/2

In the worst case,
the data analysis is (g,0)-DP




A more advanced analysis

q, x
i, X

In the worst case,
the data analysis is (g,0)-DP

It doesn’t depend on the number of queries!



A more advanced analysis

The formal proof manipulates the probabilities and
uses an important fact about Laplace noise:

One can pay a privacy cost to guarantee that two
samples are at a certain distance.
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A more advanced analysis

The formal proof manipulates the probabilities and
uses an important fact about Laplace noise:

One can pay a privacy cost to guarantee that two
samples are at a certain distance.

Pr

A

N

Pr[Lap b u = v] < e Pr[Lap b u = v+C]

C

Z
N\

\
’

q(-)
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[ Theorem: AboveThreshold is e-differentially private

Proof. Fix any two neighboring databases D and D’. Let A denote
the random variable representing the output of AboveThresh-
old(D,{f;},T,¢) and let A" denote the random variable representing
the output of AboveThreshold(D’,{f;},T,¢). The output of the algo-
rithm is some realization of these random variables, a € {T, L}* and
has the form that for all ¢« < k£, a; = L and a = T.
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[ Theorem: AboveThreshold is e-differentially private

Proof. Fix any two neighboring databases D and D’. Let A denote
the random variable representing the output of AboveThresh-
old(D,{f;},T,¢) and let A" denote the random variable representing
the output of AboveThreshold(D’,{f;},T,¢). The output of the algo-
rithm is some realization of these random variables, a € {T, L}* and
has the form that for all + < k£, a; = L and ap = T. There are two
types of random variables internal to the algorithm: the noisy thresh-
old 7" and the perturbations to each of the k queries, {v;}¥_,. For the
following analysis, we will fix the (arbitrary) values of vq,...,v;_1 and
take probabilities over the randomness of v, and T. Define the fol-
lowing quantity representing the maximum noisy value of any query
fi,..., fr—1 evaluated on D:

g(D) = max (fi(D) +v4)
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[ Theorem: AboveThreshold is e-differentially private

Note that fixing the values

of v1,...,v;_1 (which makes g(D) a deterministic quantity), we have:

Pr[A=a] = Pr[T > g(D) and fi(D) + vy > 1T
T,I/k T,I/k
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[ Theorem: AboveThreshold is e-differentially private

Note that fixing the values

of v1,...,v;_1 (which makes g(D) a deterministic quantity), we have:

Pr[A =a] = Pr(T > g(D))and fi(D) + vy > T
T,I/k T,I/k

This account for
all the queries
below the threshold.

| —— T
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[ Theorem: AboveThreshold is e-differentially private ]

Note that fixing the values

of v1,...,v;_1 (which makes g(D) a deterministic quantity), we have:

Pr[A=a] = Pr[T > g(D) and fi(D) + vy > 1T
T,I/k T,I/k

= 1}35 T € (g(D), fx(D) + v]]

[

— 1]t € (g(D), f(D) + vl dvdt
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[ Theorem: AboveThreshold is e-differentially private

—

We now make a change of variables. Define:
0 =v+g(D)—g(D') + fir(D') — fr(D)

t=t+g(D)—g(D’)
and note that for any D, D’, [# —v| < 2 and |t — ¢| < 1.
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[ Theorem: AboveThreshold is e-differentially private

_ /_O:O /_O; Priyy, = 8] - Pr[T" = {]1[(t + g(D) — g(D"))

€ (9(D), f(D') + v+ g(D) — g(D")]]dvdt
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[ Theorem: AboveThreshold is e-differentially private

= [ [ Prln=0)- Polf = 1[(¢ + 9(D) — (D)
€ (9(D), fulD') + v+ g(D) = g(D')dvds

_ / Z / ‘: Pr(y, = ] - Pr[T = ]1[(t € (g(D"), fr(D') + v]}dvdt
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[ Theorem: AboveThreshold is e-differentially private

= [ | Prl =5 Pr{f = 11 + (D) — 9(D)
c (9(D), fr.(D") + v + g(D) — g(D")]]dvdt

—/ / Prlvy = 0] - Pr = {]1[(t € (9(D"), fr(D") + v]]dvdt

/ / exp(e/2) Pr|vy = v]

-exp(e/2) Pr[T" = t]1[(t € (g(D'), fr(D') + vl]dvd
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