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Project Ideas

• Reimplementing the dualquery algorithm in Python  
and test its accuracy, 

• Implement more involved algorithms for 
reconstruction attacks (e.g. the one based on Fourier 
transform), 

• Implement an heavy hitter algorithm in the local 
model of differential privacy, 

• Using a differentially private deep learning tool on 
different kinds of high dimensional data, 

• Implement a bayesian algorithm under differential 
privacy. 



(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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Exponential Mechanism

Exponential Mechanism:

return               with prob.

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ∥x − y∥1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =
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Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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5
Exponential Mechanism

The Exponential Mechanism is a very general 
mechanism. It can actually be used as a kind of 
universal mechanism. 

Unfortunately, when the output space is big it can be 
very costly to sample from it - the best option is to 
enumerate all the possibilities. 

Moreover, when the output space is big also the 
accuracy get worse.
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Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
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D
M1 is ε1-DP 
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…
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The overall process is (ε1+ε2+…+εn)-DP 
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Question: how much perturbation do we have if 
we want to answer n queries under ε-DP?

Multiple queries



Reconstruction attack with 
polynomial adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E=o(√n) perturbation. Then 
we can show M blatantly non-private against 
an adversary A running in polynomial time and 
answering n queries.

[DinurNissim’02, DworkYekhanin’08]
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9

Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

We can split the privacy budget uniformly:

✏ =
✏
global

n

Multiple queries
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Laplace accuracy: with high probability we have:
���q(D)� r

���  O
⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏
global

n

Multiple queries
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Advanced Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O
⇣ 1

✏
global

p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]



If we don’t renormalize this is of the order of

comparable to the sample error.
O
⇣ p

n

✏
global

⌘
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Question: Can we do better?

Multiple queries
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We always need to think before applying 
composition to whether we have other options!

Composition



13Sparse vector

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:
Ensuring that the presence/absence of an individual has a
negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
qi(D) ≥ T?

SparseVector(D,q1,…,qn,T,ε)
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How can we achieve epsilon-DP by paying  
only for the queries above T?



A first step: above threshold



it returns the index of the first index i of a query q
i

such that ˆt  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;

ˆt $ t+ Lap(✏/2);
while i  n do
q̂ $ q

i

(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
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is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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such that ˆt  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;

ˆt $ t+ Lap(✏/2);
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(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)
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AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;

ˆt $ t+ Lap(✏/2);
while i  n do
q̂ $ q
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(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)
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6

1

it returns the index of the first index i of a query q
i

such that ˆt  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;
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Figure 2: Code for the Above Thresh-
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
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some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
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ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
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the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
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some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
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from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
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We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ

L

and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ

L

and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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x µ

L

[x 2 E]  e" Pr
x µ

R

[x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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An example: above threshold
3.6. The sparse vector technique 267

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., and a threshold T . Output is a
stream of responses a1, . . .

AboveThreshold(D, {fi}, T, ϵ)
Let T̂ = T + Lap

(
2
ϵ

)
.

for Each query i do
Let νi = Lap(4

ϵ )
if fi(D) + νi ≥ T̂ then

Output ai = ⊤.
Halt.

else
Output ai = ⊥.

end if
end for

Theorem 3.23. AboveThreshold is (ϵ, 0)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let A denote
the random variable representing the output of AboveThresh-
old(D, {fi}, T, ϵ) and let A′ denote the random variable representing
the output of AboveThreshold(D′, {fi}, T, ϵ). The output of the algo-
rithm is some realization of these random variables, a ∈ {⊤, ⊥}k and
has the form that for all i < k, ai = ⊥ and ak = ⊤. There are two
types of random variables internal to the algorithm: the noisy thresh-
old T̂ and the perturbations to each of the k queries, {νi}k

i=1. For the
following analysis, we will fix the (arbitrary) values of ν1, . . . , νk−1 and
take probabilities over the randomness of νk and T̂ . Define the fol-
lowing quantity representing the maximum noisy value of any query
f1, . . . , fk−1 evaluated on D:

g(D) = max
i<k

(fi(D) + νi)

In the following, we will abuse notation and write Pr[T̂ = t] as short-
hand for the pdf of T̂ evaluated at t (similarly for νk), and write 1[x]
to denote the indicator function of event x. Note that fixing the values
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Reasoning by Composition

it returns the index of the first index i of a query q
i

such that ˆt  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;

ˆt $ t+ Lap(✏/2);
while i  n do
q̂ $ q

i

(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ

L

and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ

L

and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Pr

x µ

L

[x 2 E]  e" Pr
x µ

R

[x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ

L

and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ

L

and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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x µ

R
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ

L

and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ

L

and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:

Pr

x µ

L

[x 2 E]  e" Pr
x µ

R

[x 2 E] + � (1)

Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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and µ
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marginal of µ
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coincide with µ1 and µ2 respectively, it also requires that
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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to be protected. However, the noise added to it can allow pay-
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While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
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vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ
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and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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Notice how these coupling correlate the relation R and the value of ✏ and �.
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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An example: above threshold
3.6. The sparse vector technique 267

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., and a threshold T . Output is a
stream of responses a1, . . .

AboveThreshold(D, {fi}, T, ϵ)
Let T̂ = T + Lap

(
2
ϵ

)
.

for Each query i do
Let νi = Lap(4

ϵ )
if fi(D) + νi ≥ T̂ then

Output ai = ⊤.
Halt.

else
Output ai = ⊥.

end if
end for

Theorem 3.23. AboveThreshold is (ϵ, 0)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let A denote
the random variable representing the output of AboveThresh-
old(D, {fi}, T, ϵ) and let A′ denote the random variable representing
the output of AboveThreshold(D′, {fi}, T, ϵ). The output of the algo-
rithm is some realization of these random variables, a ∈ {⊤, ⊥}k and
has the form that for all i < k, ai = ⊥ and ak = ⊤. There are two
types of random variables internal to the algorithm: the noisy thresh-
old T̂ and the perturbations to each of the k queries, {νi}k

i=1. For the
following analysis, we will fix the (arbitrary) values of ν1, . . . , νk−1 and
take probabilities over the randomness of νk and T̂ . Define the fol-
lowing quantity representing the maximum noisy value of any query
f1, . . . , fk−1 evaluated on D:

g(D) = max
i<k

(fi(D) + νi)

In the following, we will abuse notation and write Pr[T̂ = t] as short-
hand for the pdf of T̂ evaluated at t (similarly for νk), and write 1[x]
to denote the indicator function of event x. Note that fixing the values
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A more advanced analysis

…

it returns the index of the first index i of a query q
i

such that ˆt  q̂, if any.

AboveThreshold(t,D, q1, . . . , qn, ✏)
i = 1; r = n+ 1;

ˆt $ t+ Lap(✏/2);
while i  n do
q̂ $ q

i

(D) + Lap(✏/4);
if ˆt  q̂

then r = i; break;
else i = i+ 1;

return r

Figure 2: Code for the Above Thresh-
old algorithm

A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ

L

and µ
R

over A ⇥ B such that the first
marginal of µ

L

and the second marginals of µ
R

coincide with µ1 and µ2 respectively, it also requires that
the support of both distributions µ

L

and µ
R

is included in R, and that for every event E over A ⇥ B the
following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.

v1 + Lap(✏) L|k+v1�v2|✏,0({(x1, x2) 2 Z⇥ Z | x1 + k = x2}) v2 + Lap(✏) (2)
v1 + Lap(✏) L0,0({(x1, x2) 2 Z⇥ Z | x1 � x2 = v1 � v2}) v2 + Lap(✏) (3)

Notice how these coupling correlate the relation R and the value of ✏ and �.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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over A ⇥ B such that the first
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and the second marginals of µ
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following inequality inspired by differential privacy holds:
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
one need to consider is = since by the definition of differential privacy we consider the same event. The
proof of above threshold can then be described by using two specific couplings for Laplace formalizing the
two properties a) and b) described above.
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.
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A simple analysis using composition shows that in the
worst case this algorithm is (n✏/4, 0)-differential privacy, pro-
vided all queries in q1, . . . , qn are 1-sensitive. This is because
every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
One possible approach is to use the idea of probabilistic coupling, a standard tool from the analysis of
stochastic processes [46, 61]. Technically, given two probabilistic distributions µ1 and µ2 over some set
A and B, a probabilistic coupling for them is a distribution µ over A ⇥ B such that its first and second
marginals coincide with µ1 and µ2 respectively. This notion can be generalized to an approximate proba-
bilistic coupling for distributions µ1 and µ2 and a relation R ✓ A⇥B, written µ1 L(✏,�)(R) µ2. Technically,
this is a bit more involved since it requires two distributions µ
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
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one need to consider is = since by the definition of differential privacy we consider the same event. The
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erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
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Using this notion of coupling one can define the requirement of differential privacy by requiring that
every two runs of a program over two datasets differing in one element should produce distributions over
some set A that have an approximate coupling L(✏,�)(=) for the relation =✓ A⇥A. Notice that the relation
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every noised query is (✏/4, 0)-differentially private and we
have at most n of them. However, this analysis is too coarse.
We can show that the algorithm is (✏, 0)-differentially private,
i.e. the privacy cost is independent of the number of queries.
Without going in the details, the key idea is the use the noise
added on the threshold t. Notice that per se, the value of the
threshold t is not a private information, and so it doesn’t need
to be protected. However, the noise added to it can allow pay-
ing for all the queries below the threshold at once. This intu-
ition and the precise values of noise added allow to conclude
that Above Threshold is (✏, 0)-differentially private.

While the intuition of the refined analysis is rather simple,
the technical argument is quite involved and its intricacies have proved to be non-trivial also for algorithm
designers—see [47] for a discussion of several incorrect versions of the Sparse Vector technique that have
appeared in the literature. The technical proof uses some probabilistic argument combined with two prop-
erties of the Laplace distributions: a) that one can pay some privacy cost to guarantee that two samples
from the Laplace distribution are at a certain distance—this is why the threshold is noised—b) that adding
identical noise to identical value should not incur in any privacy cost—this is used in the analysis to batch
all the queries below the threshold together.

The refined proof of Above Threshold suggest that it is still possible to reason in a formal way about this
proof but a more liberal reasoning about the relational properties of the probability distribution is needed.
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It doesn’t depend on the number of queries!
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive
function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:
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Similarly, we can prove that exp(≠‘) Æ p(z)
p

Õ(z) , and this concludes the
proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘

we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘, e‘].
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3.6. The sparse vector technique 267

Algorithm 1 Input is a private database D, an adaptively chosen
stream of sensitivity 1 queries f1, . . ., and a threshold T . Output is a
stream of responses a1, . . .

AboveThreshold(D, {fi}, T, ϵ)
Let T̂ = T + Lap

(
2
ϵ

)
.

for Each query i do
Let νi = Lap(4

ϵ )
if fi(D) + νi ≥ T̂ then

Output ai = ⊤.
Halt.

else
Output ai = ⊥.

end if
end for

Theorem 3.23. AboveThreshold is (ϵ, 0)-differentially private.

Proof. Fix any two neighboring databases D and D′. Let A denote
the random variable representing the output of AboveThresh-
old(D, {fi}, T, ϵ) and let A′ denote the random variable representing
the output of AboveThreshold(D′, {fi}, T, ϵ). The output of the algo-
rithm is some realization of these random variables, a ∈ {⊤, ⊥}k and
has the form that for all i < k, ai = ⊥ and ak = ⊤. There are two
types of random variables internal to the algorithm: the noisy thresh-
old T̂ and the perturbations to each of the k queries, {νi}k

i=1. For the
following analysis, we will fix the (arbitrary) values of ν1, . . . , νk−1 and
take probabilities over the randomness of νk and T̂ . Define the fol-
lowing quantity representing the maximum noisy value of any query
f1, . . . , fk−1 evaluated on D:

g(D) = max
i<k

(fi(D) + νi)

In the following, we will abuse notation and write Pr[T̂ = t] as short-
hand for the pdf of T̂ evaluated at t (similarly for νk), and write 1[x]
to denote the indicator function of event x. Note that fixing the values
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268 Basic Techniques and Composition Theorems

of ν1, . . . , νk−1 (which makes g(D) a deterministic quantity), we have:

Pr
T̂ ,νk

[A = a] = Pr
T̂ ,νk

[T̂ > g(D) and fk(D) + νk ≥ T̂ ]

= Pr
T̂ ,νk

[T̂ ∈ (g(D), fk(D) + νk]]

=
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v]

· Pr[T̂ = t]1[t ∈ (g(D), fk(D) + v]]dvdt
.= ∗

We now make a change of variables. Define:

v̂ = v + g(D) − g(D′) + fk(D′) − fk(D)

t̂ = t + g(D) − g(D′)
and note that for any D, D′, |v̂ − v| ≤ 2 and |t̂ − t| ≤ 1. This follows
because each query fi(D) is 1-sensitive, and hence the quantity g(D)
is 1-sensitive as well. Applying this change of variables, we have:

∗ =
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v̂] · Pr[T̂ = t̂]1[(t + g(D) − g(D′))

∈ (g(D), fk(D′) + v + g(D) − g(D′)]]dvdt

=
∫ ∞

−∞

∫ ∞

−∞
Pr[νk = v̂] · Pr[T̂ = t̂]1[(t ∈ (g(D′), fk(D′) + v]]dvdt

≤
∫ ∞

−∞

∫ ∞

−∞
exp(ϵ/2) Pr[νk = v]

· exp(ϵ/2) Pr[T̂ = t]1[(t ∈ (g(D′), fk(D′) + v]]dvdt

= exp(ϵ) Pr
T̂ ,νk

[T̂ > g(D′) and fk(D′) + νk ≥ T̂ ]

= exp(ϵ) Pr
T̂ ,νk

[A′ = a]

where the inequality comes from our bounds on |v̂ − v| and |t̂ − t| and
the form of the pdf of the Laplace distribution.

Definition 3.9 (Accuracy). We will say that an algorithm which outputs
a stream of answers a1, . . . , ∈ {⊤, ⊥}∗ in response to a stream of k
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This account for  
all the queries 

below the threshold.
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where the inequality comes from our bounds on |v̂ − v| and |t̂ − t| and
the form of the pdf of the Laplace distribution.

Definition 3.9 (Accuracy). We will say that an algorithm which outputs
a stream of answers a1, . . . , ∈ {⊤, ⊥}∗ in response to a stream of k

We pay exp(ε/2)  
to change t.


