CSE660 Differential Privacy October 2, 2017

Marco Gaboardi Room: 338-B gaboardi@buffalo.edu http://www.buffalo.edu/~gaboardi

Project Ideas

- Reimplementing the dualquery algorithm in Python and test its accuracy,
- Implement more involved algorithms for reconstruction attacks (e.g. the one based on Fourier transform),
- Implement an heavy hitter algorithm in the local model of differential privacy,
- Using a differentially private deep learning tool on different kinds of high dimensional data,
- Implement a bayesian algorithm under differential privacy.

(ϵ, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Exponential Mechanism

where

$$\Delta u = \max_{r \in \mathcal{R}} \max_{x \sim 1} \left| u(x, r) - u(y, r) \right|$$

Exponential Mechanism

The Exponential Mechanism is a very general mechanism. It can actually be used as a kind of universal mechanism.

Unfortunately, when the output space is big it can be very costly to sample from it - the best option is to enumerate all the possibilities.

Moreover, when the output space is big also the accuracy get worse.

6

The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n)$ -DP

Multiple queries

Question: how much perturbation do we have if we want to answer n queries under ε-DP?

Reconstruction attack with⁸ polynomial adversary

Let M: $\{0,1\}^n \rightarrow R$ be a privacy mechanism adding noise within **E=o(\sqrt{n})** perturbation. Then we can show M blatantly non-private against an adversary A running in polynomial time and **answering n queries.**

[DinurNissim'02, DworkYekhanin'08

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

We can split the privacy budget uniformly:

$$\epsilon = \frac{\epsilon_{\rm global}}{n}$$

Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

We can split the privacy budget uniformly:

$$\epsilon = rac{\epsilon_{\mathsf{global}}}{n}$$

Laplace accuracy: with high probability we have: $\left|q(D) - r\right| \leq O\left(\frac{1}{\epsilon n}\right)$

Advanced Composition

10

Question: how much perturbation do we have if we want to answer n queries under (ϵ, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

[DworkRothblumVadhan10, SteinkeUllman16]

Advanced Composition

10

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of $O\Big(\frac{\sqrt{n}}{\epsilon_{\rm global}}\Big)$ comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]

Multiple queries

Question: Can we do better?

We always need to think before applying composition to whether we have other options!

SparseVector($D,q_1,\ldots,q_n,T,\epsilon$)

	$q_i(D) \geq 0$	T?
19144 0. 19146 0. 34505 1 25012 0. 16544 0.	ion to the second secon	Noise

Sparse vector 13 SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$) **Q**1 $q_i(D) \ge T?$ Noise 19144 0 19146 0 Imor 34505 sion 25012 0 16544 0

Sparse vector 13 SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$) **Q**1 $q_i(D) \ge T?$ Noise 19144 0 19146 0 Imor 34505 sion 25012 0 16544

Sparse vector 13 SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$) **Q**1 a_1 $q_i(D) \ge T?$ Noise 19144 0 19146 0 Imor 34505 sion 25012 0 16544

Sparse vector

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

13

SparseVector($D, q_1, \ldots, q_n, T, \varepsilon$)

How can we achieve epsilon-DP by paying only for the queries above T?

Return k

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

In the worst case, the data analysis is (**nɛ/4**,0)-DP

Can we do better?

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

An example: above threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

AboveThreshold $(D, \{f_i\}, T, \epsilon)$ Let $\hat{T} = T + \text{Lap}\left(\frac{2}{\epsilon}\right)$. for Each query *i* do Let $\nu_i = \text{Lap}\left(\frac{4}{\epsilon}\right)$ if $f_i(D) + \nu_i \ge \hat{T}$ then Output $a_i = \top$. Halt. else Output $a_i = \bot$. end if end for

In the worst case, the data analysis is (ɛ,0)-DP

In the worst case, the data analysis is (ε,0)-DP

It doesn't depend on the number of queries!

The formal proof manipulates the probabilities and uses an important fact about Laplace noise:

One can pay a privacy cost to guarantee that two samples are at a certain distance.

The formal proof manipulates the probabilities and uses an important fact about Laplace noise:

One can pay a privacy cost to guarantee that two samples are at a certain distance.

The formal proof manipulates the probabilities and uses an important fact about Laplace noise:

One can pay a privacy cost to guarantee that two samples are at a certain distance.

21

Theorem: AboveThreshold is ε-differentially private

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh-old** $(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all i < k, $a_i = \bot$ and $a_k = \top$.

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh-old** $(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all $i < k, a_i = \bot$ and $a_k = \top$.

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh-old** $(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all i < k, $a_i = \bot$ and $a_k = \top$.

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh** $old(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all i < k, $a_i = \bot$ and $a_k = \top$. There are two types of random variables internal to the algorithm: the noisy threshold \hat{T} and the perturbations to each of the k queries, $\{\nu_i\}_{i=1}^k$. For the following analysis, we will fix the (arbitrary) values of ν_1, \ldots, ν_{k-1} and take probabilities over the randomness of ν_k and \hat{T} . Define the following quantity representing the maximum noisy value of any query f_1, \ldots, f_{k-1} evaluated on D:

$$g(D) = \max_{i < k} \left(f_i(D) + \nu_i \right)$$

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh** $old(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all i < k, $a_i = \bot$ and $a_k = \top$. There are two types of random variables internal to the algorithm: the noisy threshold \hat{T} and the perturbations to each of the k queries, $\{\nu_i\}_{i=1}^k$. For the following analysis, we will fix the (arbitrary) values of ν_1, \ldots, ν_{k-1} and take probabilities over the randomness of ν_k and \hat{T} . Define the following quantity representing the maximum noisy value of any query f_1, \ldots, f_{k-1} evaluated on D:

$$g(D) = \max_{i < k} \left(f_i(D) + \nu_i \right)$$

Theorem: AboveThreshold is ε-differentially private

Proof. Fix any two neighboring databases D and D'. Let A denote the random variable representing the output of **AboveThresh-** $\mathbf{old}(D, \{f_i\}, T, \epsilon)$ and let A' denote the random variable representing the output of **AboveThreshold** $(D', \{f_i\}, T, \epsilon)$. The output of the algorithm is some realization of these random variables, $a \in \{\top, \bot\}^k$ and has the form that for all i < k, $a_i = \bot$ and $a_k = \top$. There are two types of random variables internal to the algorithm: the noisy threshold \hat{T} and the perturbations to each of the k queries, $\{\nu_i\}_{i=1}^k$. For the following analysis, we will fix the (arbitrary) values of ν_1, \ldots, ν_{k-1} and take probabilities over the randomness of ν_k and \hat{T} . Define the following quantity representing the maximum noisy value of any query f_1, \ldots, f_{k-1} evaluated on D:

$$g(D) = \max_{i < k} \left(f_i(D) + \nu_i \right)$$

Theorem: AboveThreshold is ε-differentially private

Note that fixing the values

of ν_1, \ldots, ν_{k-1} (which makes g(D) a deterministic quantity), we have:

$$\Pr_{\hat{T},\nu_{k}}[A=a] = \Pr_{\hat{T},\nu_{k}}[\hat{T} > g(D) \text{ and } f_{k}(D) + \nu_{k} \ge \hat{T}]$$

Theorem: AboveThreshold is ε-differentially private

Note that fixing the values

of ν_1, \ldots, ν_{k-1} (which makes g(D) a deterministic quantity), we have:

$$\Pr_{\hat{T},\nu_k}[A=a] = \Pr_{\hat{T},\nu_k}[\hat{T} > g(D) \text{ and } f_k(D) + \nu_k \ge \hat{T}]$$

This account for all the queries below the threshold.
Theorem: AboveThreshold is ε-differentially private

Note that fixing the values

of ν_1, \ldots, ν_{k-1} (which makes g(D) a deterministic quantity), we have:

$$\Pr_{\hat{T},\nu_{k}}[A=a] = \Pr_{\hat{T},\nu_{k}}[\hat{T} > g(D) \text{ and } f_{k}(D) + \nu_{k} \ge \hat{T}]$$

Theorem: AboveThreshold is ε-differentially private

Note that fixing the values

of ν_1, \ldots, ν_{k-1} (which makes g(D) a deterministic quantity), we have:

$$\Pr_{\hat{T},\nu_k}[A=a] = \Pr_{\hat{T},\nu_k}[\hat{T} > g(D) \text{ and } f_k(D) + \nu_k \ge \hat{T}]$$
$$= \Pr_{\hat{T},\nu_k}[\hat{T} \in (g(D), f_k(D) + \nu_k]]$$

Theorem: AboveThreshold is ε-differentially private

Note that fixing the values

of ν_1, \ldots, ν_{k-1} (which makes g(D) a deterministic quantity), we have:

$$\Pr_{\hat{T},\nu_k}[A=a] = \Pr_{\hat{T},\nu_k}[\hat{T} > g(D) \text{ and } f_k(D) + \nu_k \ge \hat{T}]$$

$$= \Pr_{\hat{T},\nu_k}[\hat{T} \in (g(D), f_k(D) + \nu_k]]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = v]$$

$$\cdot \Pr[\hat{T} = t]\mathbf{1}[t \in (g(D), f_k(D) + v]]dvdt$$

Theorem: AboveThreshold is ε-differentially private

We now make a change of variables. Define:

$$\hat{v} = v + g(D) - g(D') + f_k(D') - f_k(D)$$

 $\hat{t} = t + g(D) - g(D')$

and note that for any $D, D', |\hat{v} - v| \leq 2$ and $|\hat{t} - t| \leq 1$.

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D'))$$
$$\in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D'))$$

$$\in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t \in (g(D'), f_k(D') + v)]] dv dt$$

$$\begin{split} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D')) \\ &\quad \in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(\epsilon/2) \Pr[\nu_k = v] \\ &\quad \cdot \exp(\epsilon/2) \Pr[\hat{T} = t] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \end{split}$$

$$\begin{split} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D')) \\ &\quad \in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t \in (g(D'), f_k(D') + v]] dv dt \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(\epsilon/2) \Pr[\nu_k = v] \\ &\quad \cdot \exp(\epsilon/2) \Pr[\hat{T} = t] \mathbf{1}[(t \in (g(D'), f_k(D') + v]] dv dt \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[\hat{T} > g(D') \text{ and } f_k(D') + \nu_k \ge \hat{T}] \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[A' = a] \end{split}$$

$$\begin{split} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D')) \\ &\quad \in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(\epsilon/2) \Pr[\nu_k = v] \\ &\quad \cdot \exp(\epsilon/2) \Pr[\hat{T} = t] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[\hat{T} > g(D') \text{ and } f_k(D') + \nu_k \ge \hat{T}] \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[A' = a] \end{split}$$

$$\begin{split} &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t + g(D) - g(D')) \\ &\quad \in (g(D), f_k(D') + v + g(D) - g(D')]] dv dt \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Pr[\nu_k = \hat{v}] \cdot \Pr[\hat{T} = \hat{t}] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \\ &\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(\epsilon/2) \Pr[\nu_k = v] \\ &\quad \cdot \exp(\epsilon/2) \Pr[\hat{T} = t] \mathbf{1}[(t \in (g(D'), f_k(D') + v)] dv dt \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[\hat{T} > g(D') \text{ and } f_k(D') + \nu_k \ge \hat{T}] \\ &= \exp(\epsilon) \Pr_{\hat{T}, \nu_k}[A' = a] \end{split}$$