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Private Queries?

Differential Privacy: motivation

A. Haeberlen
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A Possible Solution:
Differential Privacy
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Trade-off between utility and privacy.
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Foundamental Law of 
Information Reconstruction
The release of too many overly accurate statistics gives 

privacy violations.

[DinurNissim02]
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This class:
understanding the mathematical and 

computational meaning of this trade-off.

18



• US Census Bureau - onTheMap, new 
releases

• Google - RAPPOR tool for Chrome

• Apple - typing statistics reports

• LeapYear - startup

• …

Some Official Users



Syllabus for the course
Location: Davis 113A 
Time: Thursday 16:30 - 19:00?  
Office Hours: Friday 11:00 - 12:00 or by appointment 
Discussion forums: NB and Piazza  
class website: http://www.buffalo.edu/~gaboardi/teaching/CSE711-
spring17.html

Course load:  
- presenting part of the material,  
- commenting on the material presented every week, 
beforehand on NB and during class,  
- working on a project and presenting the results (optional)

http://nb.mit.edu/
http://www.piazza.com/
http://www.buffalo.edu/~gaboardi/teaching/CSE711-spring17.html


Grading

50% - material presentation  
50% - engagement and participation in 
class and on NB and Piazza





Reference Material

Cynthia Dwork and Aaron Roth,  
“The Algorithmic Foundations of Differential Privacy,” 2014 
Linked from the class website. 

Salil Vadhan, 
“The Complexity of Differential Privacy” 2016. 
Linked from the class website. 
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