
Proof of Proposition 1

Let H be a complete graph over set of nodes V , where the weight of edges are represented
by function ω, that maps each edge e = (x, y) to RSD(x, y).

Lemma 1. Let ∅ 6= W ⊆ V . If {W1, . . . ,W`} is an arbitrary partition of W , with Wi 6= ∅
and ` ≥ 2, then for every 1 ≤ i ≤ ` there exists j 6= i, 1 ≤ j ≤ `, such that there is an edge
e connecting Wi and Wj with ω(e) ≤ D(W ).

Proof. Denote by HW (W,EW , ω) the subgraph induced by W in H. Suppose there exists i
such that for all j 6= i and for any edge e connecting Wi to Wj it is the case that ω(e) > D(W ).
Let e′ = (x, y) be the edge that minimizes ω with x ∈ Wi and y ∈ Wj (j 6= i). Hence
ω(e′) > D(W ). Then we have,

D(W ) = max
W ′(W

min
u∈W ′

v∈W\W ′

ω((u, v)) ≥ min
u∈Wi

v∈W\Wi

ω((u, v))

= ω(e′) > D(W ),

which is a contradiction.

Lemma 2. Let ∅ 6= W ( V . In any Minimum Spanning Tree TH of H all the edges
e = (u, v), belonging to the tree, with u ∈ W and v ∈ V \W are such that w(e) ≥ J(W ).

Proof. Suppose there exists a minimum spanning tree TH of H that contains an edge e =
(u, v) such that, u ∈ W , v ∈ V \W but ω(e) < J(W ). Since e is in TH , it is also in H, hence

ω(e) < J(W ) = min
x∈W
y/∈W

ω((x, y)),

which is a contradiction.

Lemma 3. Let ∅ 6= W ( V . In any Minimum Spanning Tree TH of H, if e = (u, v), u ∈ W
and v ∈ V \W , and e has minimum weight among edges connecting W to V \W in TH ,
then ω(e) = J(W ).

Proof. Suppose there exists a minimum spanning tree TH of H with an edge e = (u, v) ∈ TH

such that, u ∈ W , v ∈ V \W , ω(e) has minimum weight among edges connecting W to
V \W and ω(e) > J(W ) (from Lemma 2 it cannot be smaller). Pick e′ = (u′, v′) in H, with
u′ ∈ W and v′ ∈ V \W , such that ω(e′) = J(W ) (see that by definition of J(W ) such edge
exists).

Add e′ to TH . By doing that a cycle is formed in the tree, and in this cycle we have another
edge e′′ that connects W to V \W in TH . Remove e′′ from TH obtaining a new spanning
tree T ′

H . See that ω(e′′) ≥ ω(e) > ω(e′). We have∑
e∈T ′

H

ω(e) =
∑
e∈TH

ω(e)− ω(e′′) + ω(e′) <
∑
e∈TH

ω(e),

which is a contradiction because TH is a MST, and hence it has minimum cost. The last
inequality comes from the fact that ω(e′′) > ω(e′).
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Lemma 4. Let ∅ 6= W ( V . If J(W ) > D(W ), then W induces a connected subgraph in
any MST of H.

Proof. Suppose ∅ 6= W ( V with J(W ) > D(W ), and that there exists a MST TH of H in
which W does not induce a connected subgraph. Say W induces l connected components in
TH denoted by {W1, . . . ,Wl}. Pick W1, by Lemma 2 we have that W1 connects to V \W1 in
TH through an edge e1 such that ω(e1) ≥ J(W ).

By Lemma 1 we have that there is an edge, in H, e2 that connects W1 to Wj for some
2 ≤ j ≤ l and ω(e2) ≤ D(W ).

Now, remove e1 and add e2 to TH , obtaining T ′
H . Then, since J(W ) > D(W ) we have∑

e∈T ′
H

ω(e) =
∑
e∈TH

ω(e)− ω(e1) + ω(e2) <
∑
e∈TH

ω(e),

which is a contradiction, since TH is a MST of H it has minimum cost. The last inequality
comes from the fact that ω(e1) > ω(e2), once J(W ) > D(W ).

With the above lemmas we move to prove Proposition 1. Let TH be the MST computed
in Step 2 of Algorithm 1. Also, let C = {C1, . . . Ck} be the output of Algorithm 1, and
assume J(C1) ≥ · · · ≥ J(Ck). Similarly, consider B = {B1, . . . Bk} be the optimal solution
for Problem 1, and assume J(B1) ≥ · · · ≥ J(Bk).

Suppose now that B is a better solution than C, i.e., J(Bk) > J(Ck).

From Lemma 4, the Bi’s and Ci’s induce connected subgraphs in TH . As a consequence, all
the Bi’s (Ci’s) can be obtained by removing edges from TH . Moreover, from Lemma 2 those
edges have weight greater than J(Bk) (J(Ck)).

Now, let ebi and eci be edges in TH such that ω(ebi) = J(Bi) and ω(eci) = J(Ci) respectively
(From Lemma 3 we know that such edges exist).

Since J(Bk) > J(Ck), we have ω(ebk) > ω(eck). Now see that by the construction of Al-
gorithm 1 this is a contradiction. Because the algorithm would have inspected all edges
heavier than ebk (including edges with weight ω(ebk)) before reaching edge eck , yielding a
valid solution, and its output would not be C.

Proof of proposition 2

For G1: the next-hop from any source towards any destination x is always x itself. Hence,
between two destinations x and y, the next-hops from all sources will always differ, which
implies RSD(x, y) = 1.

For G2: proof by induction on the length of the path between x and y. In the base case
consider that x and y are adjacent nodes. Then for any z N(z, x) = N(z, y), except when

z = x or z = y, where the equality never holds. So RSD(x, y) = 2
|V | = 1+ treeDist(x,y)

|V | . Assume

that the proposition is true for any two nodes u and v which treeDist(u, v) = l. Take now x
and y, such that treeDist(x, y) = l+1, and let z be the adjacent neighbor of y in the shortest
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path from x to y. We have treeDist(x, z) = l, and hence RSD(x, z) = 1+l
|V | . See now that if

the next-hops towards x and z differ for 1 + l sources, then they will differ in 1 + (l + 1) for

x and y, because of z. Hence, RSD(x, y) = 1+(l+1)
|V | = 1+ treeDist(x, y)

|V | .
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