Proof of Proposition 1

Let H be a complete graph over set of nodes V', where the weight of edges are represented
by function w, that maps each edge e = (z,y) to RSD(z,y).

Lemma 1. Let )0 # W C V. If {Wh,..., Wy} is an arbitrary partition of W, with W; # ()
and € > 2, then for every 1 <1i < { there exists j # 1, 1 < j <, such that there is an edge
e connecting W; and W; with w(e) < D(W).

Proof. Denote by Hy (W, Eyw,w) the subgraph induced by W in H. Suppose there exists i
such that for all j # ¢ and for any edge e connecting W; to W; it is the case that w(e) > D(W).
Let ¢ = (x,y) be the edge that minimizes w with € W; and y € W, (j # ). Hence
w(e’) > D(W). Then we have,

D = i > i
(W) fpax - min w((u,v)) 2 min w((u,v))
veEW\W' veW\W;
= w(e) > D(W),
which is a contradiction. ]

Lemma 2. Let ) # W C V. In any Minimum Spanning Tree Ty of H all the edges
e = (u,v), belonging to the tree, with w € W and v € V.\ W are such that w(e) > J(W).

Proof. Suppose there exists a minimum spanning tree Ty of H that contains an edge e =
(u,v) such that, u € W, v € V\W but w(e) < J(W). Since e is in T, it is also in H, hence

wle) < JW) = minw((,y),
ygw

which is a contradiction. O

Lemma 3. Let ) # W C V. In any Minimum Spanning Tree Ty of H, if e = (u,v), u € W
and v € V\ W, and e has minimum weight among edges connecting W to V- \ W in Ty,
then w(e) = J(W).

Proof. Suppose there exists a minimum spanning tree Ty of H with an edge e = (u,v) € Ty
such that, u € W, v € V' \ W, w(e) has minimum weight among edges connecting W to
V\W and w(e) > J(W) (from Lemma 2 it cannot be smaller). Pick ¢/ = (v/,v’) in H, with
u € W and v € V' \ W, such that w(e’) = J(W) (see that by definition of J(W') such edge
exists).

Add €’ to Ty. By doing that a cycle is formed in the tree, and in this cycle we have another
edge €” that connects W to V' \ W in Ty. Remove e” from Ty obtaining a new spanning
tree T};. See that w(e”) > w(e) > w(e’). We have

Z w(e) = Z wle) —w(e") +w(e) < Z w(e),
eeTy e€Ty ecTy
which is a contradiction because Ty is a MST, and hence it has minimum cost. The last

inequality comes from the fact that w(e”) > w(e). O
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Lemma 4. Let 0 # W C V. If J(W) > D(W), then W induces a connected subgraph in
any MST of H.

Proof. Suppose () # W C V with J(W) > D(W), and that there exists a MST Ty of H in
which W does not induce a connected subgraph. Say W induces [ connected components in
Ty denoted by {W1, ..., W;}. Pick Wi, by Lemma 2 we have that W; connects to V' \ Wj in
Ty through an edge e; such that w(e;) > J(W).

By Lemma 1 we have that there is an edge, in H, ey that connects W; to W; for some
2 <j<landw(e) < D(W).
Now, remove e; and add ey to T4, obtaining T},. Then, since J(W) > D(W') we have

Z w(e) = Z w(e) —w(er) +wler) < Z w(e),

eeTy, e€Ty e€Ty

which is a contradiction, since Ty is a MST of H it has minimum cost. The last inequality
comes from the fact that w(e;) > w(es), once J(W) > D(W). O

With the above lemmas we move to prove Proposition 1. Let Ty be the MST computed
in Step 2 of Algorithm 1. Also, let C = {C},...Cx} be the output of Algorithm 1, and
assume J(Cy) > -+ > J(Cy). Similarly, consider B = {By,... By} be the optimal solution
for Problem 1, and assume J(By) > --- > J(By).

Suppose now that B is a better solution than C, i.e., J(Bg) > J(C).

From Lemma 4, the B;’s and C;’s induce connected subgraphs in Ty. As a consequence, all
the B;’s (C;’s) can be obtained by removing edges from Ty. Moreover, from Lemma 2 those
edges have weight greater than J(By) (J(Cy)).

Now, let €’ and e be edges in T such that w(e”) = J(B;) and w(e) = J(C;) respectively
(From Lemma 3 we know that such edges exist).

Since J(By) > J(Cy), we have w(e?*) > w(e*). Now see that by the construction of Al-
gorithm 1 this is a contradiction. Because the algorithm would have inspected all edges
heavier than e’ (including edges with weight w(e®*)) before reaching edge e, yielding a
valid solution, and its output would not be C.

Proof of proposition 2

For G;: the next-hop from any source towards any destination x is always x itself. Hence,
between two destinations x and y, the next-hops from all sources will always differ, which
implies RSD(z,y) = 1.

For G5: proof by induction on the length of the path between x and y. In the base case

consider that z and y are adjacent nodes. Then for any z N(z,x) = N(z,y), except when

z = x or z =y, where the equality never holds. So RSD(z,y) = |27| = %D'm(m’y)

that the proposition is true for any two nodes v and v which treeDist(u, v) = [. Take now x
and y, such that treeDist(z,y) = [+ 1, and let z be the adjacent neighbor of y in the shortest
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path from x to y. We have treeDist(z, z) = [, and hence RSD(z, z) = %Il See now that if

the next-hops towards x and z differ for 1 + [ sources, then they will differ in 1+ ({ + 1) for
1+(1+1) _ 1+ treeDist(x, y)
vl VI '

x and y, because of z. Hence, RSD(z,y) =



