Proof of Proposition 1

Let H be a complete graph over set of nodes V, where the weight of edges are represented by function ω, that maps each edge $e=(x, y)$ to $\operatorname{RSD}(x, y)$.

Lemma 1. Let $\emptyset \neq W \subseteq V$. If $\left\{W_{1}, \ldots, W_{\ell}\right\}$ is an arbitrary partition of W, with $W_{i} \neq \emptyset$ and $\ell \geq 2$, then for every $1 \leq i \leq \ell$ there exists $j \neq i, 1 \leq j \leq \ell$, such that there is an edge e connecting W_{i} and W_{j} with $\omega(e) \leq D(W)$.

Proof. Denote by $H_{W}\left(W, E_{W}, \omega\right)$ the subgraph induced by W in H. Suppose there exists i such that for all $j \neq i$ and for any edge e connecting W_{i} to W_{j} it is the case that $\omega(e)>D(W)$. Let $e^{\prime}=(x, y)$ be the edge that minimizes ω with $x \in W_{i}$ and $y \in W_{j}(j \neq i)$. Hence $\omega\left(e^{\prime}\right)>D(W)$. Then we have,

$$
\begin{aligned}
D(W) & =\max _{W^{\prime} \subseteq W} \min _{\substack{u \in W^{\prime} \\
v \in W \backslash W^{\prime}}} \omega((u, v)) \geq \min _{\substack{u \in W_{i} \\
v \in W \backslash W_{i}}} \omega((u, v)) \\
& =\omega\left(e^{\prime}\right)>D(W),
\end{aligned}
$$

which is a contradiction.
Lemma 2. Let $\emptyset \neq W \subsetneq V$. In any Minimum Spanning Tree T_{H} of H all the edges $e=(u, v)$, belonging to the tree, with $u \in W$ and $v \in V \backslash W$ are such that $w(e) \geq J(W)$.

Proof. Suppose there exists a minimum spanning tree T_{H} of H that contains an edge $e=$ (u, v) such that, $u \in W, v \in V \backslash W$ but $\omega(e)<J(W)$. Since e is in T_{H}, it is also in H, hence

$$
\omega(e)<J(W)=\min _{\substack{x \in W \\ y \notin W}} \omega((x, y))
$$

which is a contradiction.
Lemma 3. Let $\emptyset \neq W \subsetneq V$. In any Minimum Spanning Tree T_{H} of H, if $e=(u, v), u \in W$ and $v \in V \backslash W$, and e has minimum weight among edges connecting W to $V \backslash W$ in T_{H}, then $\omega(e)=J(W)$.

Proof. Suppose there exists a minimum spanning tree T_{H} of H with an edge $e=(u, v) \in T_{H}$ such that, $u \in W, v \in V \backslash W, \omega(e)$ has minimum weight among edges connecting W to $V \backslash W$ and $\omega(e)>J(W)$ (from Lemma 2 it cannot be smaller). Pick $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ in H, with $u^{\prime} \in W$ and $v^{\prime} \in V \backslash W$, such that $\omega\left(e^{\prime}\right)=J(W)$ (see that by definition of $J(W)$ such edge exists).
Add e^{\prime} to T_{H}. By doing that a cycle is formed in the tree, and in this cycle we have another edge $e^{\prime \prime}$ that connects W to $V \backslash W$ in T_{H}. Remove $e^{\prime \prime}$ from T_{H} obtaining a new spanning tree T_{H}^{\prime}. See that $\omega\left(e^{\prime \prime}\right) \geq \omega(e)>\omega\left(e^{\prime}\right)$. We have

$$
\sum_{e \in T_{H}^{\prime}} \omega(e)=\sum_{e \in T_{H}} \omega(e)-\omega\left(e^{\prime \prime}\right)+\omega\left(e^{\prime}\right)<\sum_{e \in T_{H}} \omega(e),
$$

which is a contradiction because T_{H} is a MST, and hence it has minimum cost. The last inequality comes from the fact that $\omega\left(e^{\prime \prime}\right)>\omega\left(e^{\prime}\right)$.

Lemma 4. Let $\emptyset \neq W \subsetneq V$. If $J(W)>D(W)$, then W induces a connected subgraph in any MST of H.

Proof. Suppose $\emptyset \neq W \subsetneq V$ with $J(W)>D(W)$, and that there exists a MST T_{H} of H in which W does not induce a connected subgraph. Say W induces l connected components in T_{H} denoted by $\left\{W_{1}, \ldots, W_{l}\right\}$. Pick W_{1}, by Lemma 2 we have that W_{1} connects to $V \backslash W_{1}$ in T_{H} through an edge e_{1} such that $\omega\left(e_{1}\right) \geq J(W)$.
By Lemma 1 we have that there is an edge, in H, e_{2} that connects W_{1} to W_{j} for some $2 \leq j \leq l$ and $\omega\left(e_{2}\right) \leq D(W)$.
Now, remove e_{1} and add e_{2} to T_{H}, obtaining T_{H}^{\prime}. Then, since $J(W)>D(W)$ we have

$$
\sum_{e \in T_{H}^{\prime}} \omega(e)=\sum_{e \in T_{H}} \omega(e)-\omega\left(e_{1}\right)+\omega\left(e_{2}\right)<\sum_{e \in T_{H}} \omega(e)
$$

which is a contradiction, since T_{H} is a MST of H it has minimum cost. The last inequality comes from the fact that $\omega\left(e_{1}\right)>\omega\left(e_{2}\right)$, once $J(W)>D(W)$.

With the above lemmas we move to prove Proposition 1. Let T_{H} be the MST computed in Step 2 of Algorithm 1. Also, let $\mathcal{C}=\left\{C_{1}, \ldots C_{k}\right\}$ be the output of Algorithm 1, and assume $J\left(C_{1}\right) \geq \cdots \geq J\left(C_{k}\right)$. Similarly, consider $\mathcal{B}=\left\{B_{1}, \ldots B_{k}\right\}$ be the optimal solution for Problem 1, and assume $J\left(B_{1}\right) \geq \cdots \geq J\left(B_{k}\right)$.
Suppose now that \mathcal{B} is a better solution than \mathcal{C}, i.e., $J\left(B_{k}\right)>J\left(C_{k}\right)$.
From Lemma 4, the B_{i} 's and C_{i} 's induce connected subgraphs in T_{H}. As a consequence, all the B_{i} 's (C_{i} 's) can be obtained by removing edges from T_{H}. Moreover, from Lemma 2 those edges have weight greater than $J\left(B_{k}\right)\left(J\left(C_{k}\right)\right)$.
Now, let $e^{b_{i}}$ and $e^{c_{i}}$ be edges in T_{H} such that $\omega\left(e^{b_{i}}\right)=J\left(B_{i}\right)$ and $\omega\left(e^{c_{i}}\right)=J\left(C_{i}\right)$ respectively (From Lemma 3 we know that such edges exist).
Since $J\left(B_{k}\right)>J\left(C_{k}\right)$, we have $\omega\left(e^{b_{k}}\right)>\omega\left(e^{c_{k}}\right)$. Now see that by the construction of Algorithm 1 this is a contradiction. Because the algorithm would have inspected all edges heavier than $e^{b_{k}}$ (including edges with weight $\omega\left(e^{b_{k}}\right)$) before reaching edge $e^{c_{k}}$, yielding a valid solution, and its output would not be \mathcal{C}.

Proof of proposition 2

For G_{1} : the next-hop from any source towards any destination x is always x itself. Hence, between two destinations x and y, the next-hops from all sources will always differ, which implies $\operatorname{RSD}(x, y)=1$.
For G_{2} : proof by induction on the length of the path between x and y. In the base case consider that x and y are adjacent nodes. Then for any $z N(z, x)=N(z, y)$, except when $z=x$ or $z=y$, where the equality never holds. $\operatorname{So~} \operatorname{RSD}(x, y)=\frac{2}{|V|}=\frac{1+\operatorname{tree\operatorname {Dist}(x,y)}}{|V|}$. Assume that the proposition is true for any two nodes u and v which treeDist $(u, v)=l$. Take now x and y, such that treeDist $(x, y)=l+1$, and let z be the adjacent neighbor of y in the shortest
path from x to y. We have treeDist $(x, z)=l$, and hence $\operatorname{RSD}(x, z)=\frac{1+l}{|V|}$. See now that if the next-hops towards x and z differ for $1+l$ sources, then they will differ in $1+(l+1)$ for x and y, because of z. Hence, $\operatorname{RSD}(x, y)=\frac{1+(l+1)}{|V|}=\frac{1+\operatorname{treeDist}(\mathrm{x}, \mathrm{y})}{|V|}$.

