MIHash: Online Hashing with Mutual Information

Fatih Cakir*, Kun He*, Sarah Adel Bargal, Stan Sclaroff (*equal contribution)

Computer Science, Boston University
{fcakir, hekun, sbargal, sclaroff}@cs.bu.edu

Experiments: Online Hashing

Datasets: CIFAR-10 (60K), Places205 (2.5M), LabelMe (22K)

OKH [IJCAI’13], AdaptHash [ICCV’15], SketchHash [CVPR’15], OSH [ICIP’15]

Trigger Update on vs. off: CIFAR-10, 32 bits, mAP

Trigger Update on: CIFAR-10, 32 bits, mAP

Experiments: Batch Hashing

Batch Hashing: CIFAR-10, mAP

Setting 1: 5K / 1K, VGG-F fc7. **Setting 2:** 50K / 10K, VGG-F end-to-end.

Methods:
- SHK [CVPR’12]
- SDH [CVPR’15]
- FastHash [CVPR’14]
- VDSH [CVPR’16]
- DPSH [IJCAI’16]
- DTSH [ACCV’16]

Quality Measure: Mutual Information

- **Mutual Information:** decrease in entropy of distance distribution, when conditioned on neighborhood info.

\[D_{k,\Phi}: X \to \{0, 1, \ldots, b\}, x \to d_k(x, \hat{x}) \]

\[C_{k}: X \to \{0, 1\} \]

Optimization approach: continuous relaxation

- Differentiable histogram binning [Usnitova & Lempitsky, NIPS’16]
- Binary bits: sigmoid approximation

Background

Online Hashing: learn \(\Phi : X \to \mathcal{X}^b \) with streaming data.

Q: When do we update the hash table?
A: Only when hashing quality improves!

<table>
<thead>
<tr>
<th>Quality Measure: Mutual Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Mutual Information: decrease in entropy of distance distribution, when conditioned on neighborhood info.</td>
</tr>
<tr>
<td>- Quality measure: integrate over feature space</td>
</tr>
</tbody>
</table>

\[Q(\Phi) = \int_{X} I(D_{k,\Phi}; C_{k}) p(\hat{x}) d\hat{x} \]

\[= \int_{X} (H(C_{k}) - H(C_{k}|D_{k,\Phi})) p(\hat{x}) d\hat{x} \]

MIHash: Gradient-based MI Optimization

\[\frac{\partial I(D_{k,\Phi} ; C_{k})}{\partial \Phi(x)} = \frac{\partial H(D_{k,\Phi})}{\partial \Phi(x)} - \frac{\partial H(D_{k,\Phi} ; C_{k})}{\partial \Phi(x)} \]

\[= \sum_{i} \frac{\partial H(D_{k,\Phi})}{\partial p_{D_{i,\Phi}}} \cdot \frac{\partial p_{D_{i,\Phi}}}{\partial \Phi(x)} - \sum_{i} \frac{\partial H(D_{k,\Phi} ; C_{k})}{\partial p_{D_{i,\Phi}}} \cdot \frac{\partial p_{D_{i,\Phi}}}{\partial \Phi(x)} \]

Trigger Update: Plug-in Module

Online Hashing: learn \(\Phi : X \to \mathcal{X}^b \) with streaming data.

Q: When do we update the hash table?
A: Only when hashing quality improves!

Experiments: Batch Hashing

Batch Hashing: CIFAR-10, mAP

Setting 1: 5K / 1K, VGG-F fc7. **Setting 2:** 50K / 10K, VGG-F end-to-end.

Methods:
- SHK [CVPR’12]
- SDH [CVPR’15]
- FastHash [CVPR’14]
- VDSH [CVPR’16]
- DPSH [IJCAI’16]
- DTSH [ACCV’16]

Experiments

https://github.com/fcakir/mihash