Model and Motivation

- We study sublinear computation with an online adversary.
- Adversary hides or corrupts up to \(t \) input values after each query is answered.
- Deeper understanding of structure of violations to fundamental properties.

Online-Erasure-Resilient Testers

Theorem 1. Linearity and quadraticity can be tested with online erasures with the same query complexity as in standard property testing.

A function \(f : \{0,1\}^d \rightarrow \{0,1\} \) is linear if it is a polynomial of degree at most 1; quadratic if polynomial of degree at most 2.

Linearity. BLR tester [1] optimal for no erasures.

Repeat \(O(1/\varepsilon) \) times:
- Sample pair \((x, y)\).
- Reject if \(f(x) + f(y) \neq f(x+y) \).

Issue with 1-online-erasure oracle: once \(x \) and \(y \) are queried, oracle erases \(x+y \).

New structural result: For all even \(k \), the fraction of \(k \)-tuples that violate linearity is at least \(\varepsilon \).

Our tester
- sample and query reserve of \(O(\log t / \varepsilon) \) points.
- query sums of \(k \) elements sampled from reserve, for some even \(k \).

Quadraticity. Tester of Alon et al. [2] looks for more complicated witnesses.

Lower Bounds

Theorem 2. For testing linearity, \(\log t \) queries are required.

Theorem 3. Some properties are impossible to test even with a 1-online-erasure oracle: sortedness and Lipschitz property of sequences.

Sorted sequence: \(f(x) \leq f(y) \) for all \(x < y \).

If no erasures, can be tested with \(O(\log n) \) queries [3] or \(O(\sqrt{n}) \) uniform queries.

Hard to test instances: