Online-Erasure-Resilient Testers

Theorem 1. Linearity and quadraticity can be tested with online erasures with the same query complexity as in standard property testing.

A function \(f: \{0,1\}^d \rightarrow \{0,1\} \) is linear if it is a polynomial of degree at most 1; quadratic if polynomial of degree at most 2.

Linearity. BLR tester \([1]\) optimal for no erasures. Repeat \(O(1/\varepsilon) \) times:
- Sample pair \((x,y)\).
- Reject if \(f(x) + f(y) \neq f(x+y) \).

Issue with 1-online-erasure oracle: once \(x \) and \(y \) are queried, oracle erases \(x+y \).

Our **tester**
- Sample and query reserve of \(O(t/\varepsilon) \) points.
- Query sums of points sampled from reserve.

Quadraticity. Tester of Alon et al. \([2]\) looks for more complicated witnesses.

Lower Bounds

Theorem 2. Some properties are impossible to test even with a 1-online-erasure oracle: sortedness and Lipschitz property of sequences.

Sorted sequence: \(f(x) \leq f(y) \) for all \(x < y \).

If no erasures, can be tested with \(O(\log n) \) queries \([3]\) or \(O(\sqrt{n}) \) uniform queries \([4]\).

Hard to test instances: