Isoperimetric Inequalities For Real-Valued Functions with Applications to Monotonicity Testing

> Iden Kalemaj Boston University November 23, 2020

Joint work with Hadley Black (UCLA / research visitor at BU, Summer 2020) and Sofya Raskhodnikova (BU)

Overview

For Boolean functions on the hypercube: $f: \{0,1\}^d \rightarrow \{0,1\}$.

Undirected

- Margulis '74
- Talagrand '93

Directed

- Chakrabarty and Seshadhri '13
- Khot, Minzer, Safra '15

We generalize these inequalities to **real-valued** functions: $f: \{0,1\}^d \to \mathbb{R}$.

Motivation:

- To understand the structure of real-valued functions.
- To improve sublinear algorithms for monotonicity.

- 1. Explain our results in monotonicity testing.
- 2. Give some background on the inequalities.
- 3. Prove our generalized inequalities.

The d-dimensional hypercube

- Hypercube has 2^d vertices, the points in $\{0,1\}^d$.
- $x \rightarrow y$ is an edge if:
 - *x_i* = 0, *y_i* = 1 *x_i* = *y_i* for all *j* ∈ [*n*]\{*i*}

- *f* is monotone if the value of *f* along every edge does not decrease.
- Edge $x \to y$ is influential if $f(x) \neq f(y)$.
- Edge $x \to y$ is violated if f(x) > f(y).

Distance to monotonicity

- Let **dist**(*f*, **mono**) denote the distance of *f* to monotonicity
- dist(f, mono) = least number values of f that need to be changed to make f monotone

dist(f, mono) = 0

dist(f, mono) = 3

Algorithmic tasks

- Approximating distance to monotonicity: [Parnas, Ron, Rubinfeld '06], [Fattal, Ron '10]
 - Given oracle access to f s.t. dist $(f, mono) \ge \alpha \cdot 2^d$. ← can turn this into additive error
 - Achieves *c*-approximation if it returns estimate $\hat{\varepsilon}$ that whp:

 $dist(f, mono) \le \hat{\varepsilon} \le \mathbf{c} \cdot dist(f, mono)$

Extensively studied problem [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan '00][Dodis Goldreich Lehman Raskhodnikova '99][Lehman Ron '01][Ailon Chazelle '06][Fischer '04][Halevy Kushilevitz '08][Batu Rubinfeld White '05][Ailon Chazelle Seshadhri Liu '07][Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff '12][Briet Chakraborty Soriano Matsliah '12][Blais Raskhodnikova Yaroslavtsev '14][Chakrabarty Seshadhri '13'14'16'19][Chen Servedio Tan '14][Belovs Blais '16][Pallavoor Raskhodnikova Varma '18][Black Chakrabarty Seshadhri '18'20]

Functions on the hypercube $\{0,1\}^d$, \mathbf{r} = number of distinct values of f.

	Boolean		Real-Valued (Previous)	Real-Valued (Our results)	
	Upper bounds	$\widetilde{O}\left(\frac{\sqrt{d}}{\varepsilon^2}\right)$	$O\left(\frac{d}{\varepsilon}\right)$	$\tilde{O}\left(\min\left(\frac{r\sqrt{d}}{\varepsilon^2},\frac{d}{\varepsilon}\right)\right)$	
nona	daptive =	[Khot Minzer Safra '15]	[Chakrabarty Seshadhri '13]		
tester makes all its queries in advance		Nonadaptive: $\widetilde{\Omega}(\sqrt{d})$ [Fischer Lehman Newman			
	Lower Bounds	Raskhodnikova Rubinfeld '02] [Chen De Servedio Tan '15] [Chen Waingarten Xie '17]	$\Omega(\min(d,r^2))$ [Blais Brody Matulef '12]	$\Omega(\min(\mathit{r}\sqrt{d},d))$ Nonadaptive, 1-sided error	
		Adaptive : $\widetilde{\Omega}ig(\mathrm{d}^{1/3}ig)$			
		[Chen Waingarten Xie '17]			

Results – Distance Approximation

Functions on the hypercube: $\{0,1\}^d$, r = number of distinct values of f

Upper bounds $\sqrt{d \log d}$ -factor $d \log r$ –factor[Pallavoor Raskhodnikova Waingarten '20][Fattal Ron '10] $\sqrt{d \log d}$ -factorLower bounds \sqrt{d} - factor (nonadaptive)no		Boolean	Real-Valued (Previous)	Real-Valued (Our results)
Lower bounds \sqrt{d} - factor (nonadaptive)	Upper bounds	[Pallavoor Raskhodnikova		
	Lower bounds			

Isoperimetric Inequalities (Undirected)

- An edge (x, y) is influential if $f(x) \neq f(y)$.
- Let $I_f(x) = \#$ influential edges (x, y) s.t. f(x) > f(y).

• [Talagrand '93] For a Boolean function f,

an function
$$f$$
,
 $p_0 = \text{fraction of zeros}$
 $\operatorname{var}(f) = p_0(1 - p_0)$
 $= \Omega(\operatorname{var}(f)) \cdot 2^d$

• [Margulis '74] For a Boolean function f,

 $\sum_{x\in\{0,1\}^d} \left[\sqrt{I_f(x)} \right]$

$$\frac{(\#influential edges) \cdot (\#boundary vertices)}{2^{2d}} = \Omega(var(f)^2)$$

Isoperimetric Inequalities (Directed)

- An edge $x \to y$ is violated if f(x) > f(y).
- Let $I_f^-(x) = \#$ outgoing violated edges at x.

• [Khot Minzer Safra '15] For a Boolean function f, [Pallavoor Raskhodnikova Waingarten '20]

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{mono}))$$

• [Chakrabarty Seshadhri '13] For a Boolean function f,

(#violated edges) \cdot (#boundary vertices) = $\Omega(\operatorname{dist}(f, \operatorname{mono})^2)$

variance \rightarrow dist to mono

Our inequalities

• (**Directed**) For all real-valued functions $f: \{0,1\}^d \to \mathbb{R}$: $I_f^-(x) = \#$ outgoing violated edges at x

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{mono})) \quad \longleftarrow \text{ no dependence on the range of } f(x) = \Omega(\operatorname{dist}(f, \operatorname{mono}))$$

• (**Undirected**) For all real-valued functions $f: \{0,1\}^d \to \mathbb{R}$:

$$I_f(x) = \#$$
 influential edges at x

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{constant})),$$

For a Boolean function, variance and normalized distance to constant are within a factor of 2

We don't care about the magnitude of change

Number of values that need to be changed to make *f* constant

Main inequality

• (**Directed**) For all real-valued functions $f: \{0,1\}^d \to \mathbb{R}$:

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{mono}))$$

- Inequality we use for our applications.
- Implies all other inequalities mentioned in this talk.
- We show how to prove it.

Main inequality

- $I_f^-(x) = \#$ outgoing violated edges at x
- (**Directed**) For all real-valued functions $f: \{0,1\}^d \to \mathbb{R}$:

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{mono}))$$

Main inequality

• (**Directed**) For all real-valued functions $f: \{0,1\}^d \to \mathbb{R}$:

$$\sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\operatorname{dist}(f, \operatorname{mono}))$$

• We prove it by reducing to the Boolean case, via Boolean Decomposition Theorem.

Boolean Decomposition Theorem

- It works for every partially ordered domain, which we represent as a DAG G.
- Monotonicity testing on posets first considered by [Fischer Lehman Newman Raskhodnikova Rubinfeld '02].
- Vertices V(G), edges E(G).
- $x \leq y$ iff there is directed path from x to y.
- Edge $x \to y$ is violated if f(x) > f(y).

Boolean Decomposition Theorem

• Let VIOL(f) denote the violated edges of f.

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that:

(1)
$$\sum_{i \in [k]} \operatorname{dist}(f_i, \operatorname{mono}) \ge \frac{1}{2} \operatorname{dist}(f, \operatorname{mono})$$
 collectively capture distance to monotonicity of f
(2) $\operatorname{VIOL}(f_i) \subseteq \operatorname{VIOL}(f)$ edges violated by f_i are also violated by f
(3) $\operatorname{VIOL}(f_i) \subseteq E(H_i)$ edges violated by f_i are contained in H_i

$$BD \text{ Theorem} \rightarrow \text{Main inequality} \qquad I_{f}^{-}(x) = \# \text{ outgoing violated edges at } x$$

$$\sum_{x \in \{0,1\}^{d}} \left[\sqrt{I_{f}^{-}(x)} \right] \ge \sum_{x \in UH_{i}} \left[\sqrt{I_{f}^{-}(x)} \right] \qquad UH_{i} \text{ is a subgraph of original graph}$$

$$\ge \sum_{i \in [k]} \sum_{x \in H_{i}} \left[\sqrt{I_{f}^{-}(x)} \right] \qquad \text{the } H_{i} \text{ are disjoint subgraphs}$$

$$\stackrel{\text{edges violated by}}{f_{i} \text{ are in } H_{i}} \ge \sum_{i \in [k]} \sum_{x \in H_{i}} \left[\sqrt{I_{f}^{-}(x)} \right] \qquad \text{edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ outgoing violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ outgoing violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ outgoing violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ outgoing violated by } f_{i} \text{ are a subset of edges violated by } f_{i} \text{ outgoing violated bing } f_{i}$$

Proof of BD Theorem

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

$$\Rightarrow \text{Main inequality} \sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\text{dist}(f, \text{mono}))$$

Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

- Edges violated by h_t are a subset of the edges violated by f.
- But dist(f, mono) can decrease by a factor of r (# distinct values of f)
- Can construct function so that dist(f, mono) decreases by r for all thresholds $t \in [r]$.
- BD Theorem allows us to apply different thresholds in disjoint locations of hypercube.

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

- 1. How to obtain disjoint subgraphs H_i from a matching of vertices.
- 2. Specify a special matching.
- 3. Define Boolean functions f_i given subgraphs H_i .
- 4. Prove desired properties of f_i .

Definition (Sweeping Graphs) For two disjoint sets of vertices $S, T \subseteq V(G)$:

subgraph Sweep(S, T) = subgraph formed from union of all directed paths from vertices in S to vertices in T

Call (*S*,*T*) a set-pair.

Definition (Sweeping Graphs) For two disjoint sets $S, T \subseteq V(G)$:

subgraph Sweep(S, T) = subgraph formed from union of all directed paths from vertices in S to vertices in T

Useful properties:

- Sweep(*S*,*T*) is an induced subgraph
- A vertex outside Sweep(S,T) cannot be both "above" and "below" Sweep(S,T)

it has a path from a vertex in in Sweep(S,T)

it has a path to a vertex in Sweep(*S*,*T*)

We consider matchings $M: S \to T$, where $S, T \subseteq V(G)$.

M contains disjoint pairs (x, y) of vertices such that $x \leq y$.

A pair (x, y) in *M* is violated if f(x) > f(y).

[Fischer Lehman Newman Raskhodnikova Rubinfeld '02].

Fact. For every function *f* and maximal matching *M* of violated pairs:

 $|\text{maximal matching}| \le \text{dist}(f, \text{mono}) \le 2|\text{maximal matching}|$

S = lower endpoints, T = upper endpoints

<u>Recall</u> Sweep(X, Y) = subgraph of paths from vertices in X to vertices in Y

Two set-pairs of vertices (X, Y) and (X', Y') conflict if:

• Sweep(X, Y) intersects Sweep(X', Y').

Algorithm Merge-Conflicts:

- Input: matching $M: S \to T$
- Initialize collection of set-pairs ({s}, {t}) for all (s, t) $\in M$
- Repeat until there are no conflicts:
 - o if two set-pairs pairs (X, Y) and (X', Y') conflict, merge them,
 - i.e. remove them from collection of pairs, and add new pair $(X \cup X', Y \cup Y')$

 $M = \{(a, x), (b, y), (c, z)\}$ Collection = ({a}, {x}), ({b}, {y}), ({c}, {z})

 $M = \{(a, x), (b, y), (c, z)\}$ Collection = ({a}, {x}), ({b}, {y}), ({c}, {z})

 $M = \{(a, x), (b, y), (c, z)\}$

Collection = $(\{a\}, \{x\}), (\{b\}, \{y\}), (\{c\}, \{z\})$

 $M = \{(a, x), (b, y), (c, z)\}$ Collection = $(\{a, b\}, \{x, y\}), (\{c\}, \{z\})$

$$M = \{(a, x), (b, y), (c, z)\}$$

Collection = $(\{a, b\}, \{x, y\}), (\{c\}, \{z\})$ Final collection

Algorithm Merge-Conflicts with matching $M: S \to T$ gives set-pairs $(S_1, T_1), (S_2, T_2), \dots, (S_k, T_k)$ such that:

- The sets S_i partition S, the sets T_i partition T.
- The subgraphs $Sweep(S_i, T_i)$ are vertex-disjoint.
- (**Rematching property**) For $x \in S_i$, $y \in T_i$ such that $x \leq y$: there exists another matching

Algorithm Merge-Conflicts with matching $M: S \to T$ gives set-pairs $(S_1, T_1), (S_2, T_2), \dots, (S_k, T_k)$ such that:

- The sets S_i partition S, the sets T_i partition T.
- The subgraphs $Sweep(S_i, T_i)$ are vertex-disjoint.
- (**Rematching property**) For $x \in S_i$, $y \in T_i$ such that $x \leq y$: there exists another matching
 - $M': S \to T$ that matches (x, y).

Proof of BD Theorem

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

- \checkmark How to obtain disjoint subgraphs H_i from a matching of vertices.
- 2. Specify a special matching.
- 3. Define Boolean functions f_i given subgraphs H_i .
- 4. Prove desired properties of f_i .

Step 2: Special matching

Use a special matching *M* (max-weight, min-cardinality):

o it maximizes weight $\sum_{(x,y)\in M} (f(x) - f(y))$,

 \circ and amongst such matchings has the fewest pairs.

Run algorithm Merge-Conflicts with special matching *M*.

Sweep(S_i, T_i) are the subgraphs H_i .

M is maximal

violated

all pairs in M are

٠

Violation Lemma. The set-pairs $(S_1, T_1), (S_2, T_2), \dots, (S_k, T_k)$ satisfy:

will need to be more

careful about

thresholding

• For all $i \in [k]$, $x \in S_i$, $y \in T_i$, such that $x \leq y$, we have f(x) > f(y).

can threshold while preserving violations.

Violation Lemma. The set-pairs $(S_1, T_1), (S_2, T_2), \dots, (S_k, T_k)$ obtained from the special matching *M* satisfy: For all $i \in [k], x \in S_i, y \in T_i$, s.t. $x \leq y$, we have f(x) > f(y).

weight: $\sum_{(x,y)\in M} (f(x) - f(y))$

Proof.

- Suppose that for some $x \in S_i$, $y \in T_i$, with $x \leq y$ we have $f(x) \leq f(y)$.
- Use the rematching property to get a new matching $M': S \rightarrow T$ that matches (x, y).
- *M*' has the same weight as *M*, since the endpoints have not changed.
- $M' \setminus (x, y)$ has weight at least as big as M, because $f(x) f(y) \leq 0$.
- But $M' \setminus (x, y)$ has fewer pairs. Contradiction.

Step 1+2 summary

- Start with special matching $M: S \rightarrow T$ (max weight, min-cardinality).
- *M* is a maximal matching of violated pairs: |M| < dist(f, mono) < 2|M|
- Run algorithm Merge-Conflicts to obtain set-pairs $(S_1, T_1), (S_2, T_2), \dots, (S_k, T_k)$
- The subgraphs $Sweep(S_i, T_i)$ are vertex-disjoint.
- (Violation Lemma) For $x \in S_i$, $y \in T_i$ such that $x \leq y$ we have f(x) > f(y).

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

- \checkmark How to obtain disjoint subgraphs H_i from a matching of vertices.
- ✓ <u>Specify a special matching</u>.
- 3. Define Boolean functions f_i given subgraphs H_i .
- 4. Prove desired properties of f_i .

Step 3: Define Boolean Functions

Step 3: Define Boolean Functions

Given (S_i, T_i) , define $f_i: V(G) \rightarrow \{0,1\}$ in Sweep(S_i, T_i) • $f(z) > \max_{x \in T_i, z \leq x} f(x)$, then $f_i(z) = 1$ T_{i} • $f(z) \leq \max_{\substack{x \in T_i, z \leq x}} f(x)$, then $f_i(z) = 0$ Ζ 0 0 not in Sweep (S_i, T_i) S_i • above, then $f_i(z) = 1$ • not above, then $f_i(z) = 0$ 0 a vertex cannot be both above don't want violations and below $Sweep(S_i, T_i)$ outside of $Sweep(S_i, T_i)$

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

- ✓ How to obtain disjoint subgraphs H_i from a matching of vertices.
- ✓ Specify a special matching.
- ✓ Define Boolean functions f_i given subgraphs H_i .
- 4. Prove desired properties of f_i .

Step 4: Proof of BD Theorem

(1) The functions f_i preserve dist(f, mono). Vertex $z \in T_i$, and z above z • Each vertex in T_i will have value 0. By Violation Lemma. • Each vertex in S_i will have value 1. • If $z \in S_i$, then f(z) > f(x) for all $x \in T_i$ above z. l_i • \Rightarrow f_i has matching of violated pairs $M_i: S_i \rightarrow T_i$. 0 • M_i is restriction of M to Sweep (S_i, T_i) . 0 • All the M_i for $i \in [k]$ are disjoint. Si 0 $\sum_{i=1}^{n} \operatorname{dist}(f_i, \operatorname{mono}) \ge \sum_{i=1}^{n} |M_i| \ge |M| \ge \frac{1}{2} \operatorname{dist}(f, \operatorname{mono})$

(2) Edges violated by f_i are contained in Sweep (S_i, T_i)

Consider edge $x \rightarrow y$ not in Sweep (S_i, T_i)

y above Sweep(S_i , T_i), $f_i(y) = 1$.

(2) Edges violated by f_i are contained in Sweep (S_i, T_i)

0

X

 T_i

Si

0

0

0

Consider edge $x \rightarrow y$ not in Sweep (S_i, T_i)

x below Sweep(S_i, T_i), $f_i(x) = 0$.

(2) Edges violated by f_i are contained in Sweep (S_i, T_i)

Consider edge $x \rightarrow y$ not in Sweep (S_i, T_i)

Step 4: Proof of BD Theorem

(3) Edges violated by f_i are violated by f

Consider edge $x \rightarrow y$ violated by f_i (in Sweep(S_i, T_i))

 $f_i(x) = 1, f_i(y) = 0$

For $t \in T_i$ such that $y \leq t$, then $x \leq t$.

Therefore: threshold for x threshold for y $f(x) > \max_{t \in T_i, x \leq t} f(t) \ge \max_{t \in T_i, y \leq t} f(t) \ge f(y)$

 \Rightarrow Edge $x \rightarrow y$ violated by f

BD Theorem: Let *G* be a DAG, and $f: V(G) \to \mathbb{R}$ a nonmonotone function. For some $k \ge 1$, there exist Boolean functions $f_1, f_2, ..., f_k: V(G) \to \{0,1\}$ and disjoint subgraphs $H_1, H_2, ..., H_k$ of *G* such that: (1) $\sum_{i \in [k]} \text{dist}(f_i, \text{mono}) \ge \frac{\text{dist}(f, \text{mono})}{2}$ (2) $\text{VIOL}(f_i) \subseteq \text{VIOL}(f)$ (3) $\text{VIOL}(f_i) \subseteq E(H_i)$

- \checkmark How to obtain disjoint subgraphs H_i from a matching of vertices.
- ✓ Specify a special matching.
- ✓ Define Boolean functions f_i given subgraphs H_i .
- ✓ Prove desired properties of f_i .

$$\Rightarrow \text{Main inequality } \sum_{x \in \{0,1\}^d} \left[\sqrt{I_f^-(x)} \right] = \Omega(\text{dist}(f, \text{mono}))$$

- Improved sublinear algorithms for monotonicity.
- Generalized isoperimetric inequalities.
- Proved the Boolean Decomposition Theorem.

Open Question. Do the isoperimetric inequalities hold for other domains?

- Specifically, the hypergrid domain $[n]^d$.
- Margulis type inequality holds [Black Chakrabarty Seshadhri '18]. What about Talagrand?
- It would suffice to show such inequality for the Boolean case.
- Use our BD Theorem to generalize to real-valued functions.
- Improve algorithms for monotonicity testing on hypergrid.