Isoperimetric Inequalities For Real-Valued Functions with Applications to Monotonicity Testing

Iden Kalemaj
Boston University
November 23, 2020

Joint work with Hadley Black (UCLA / research visitor at BU, Summer 2020) and Sofya Raskhodnikova (BU)

Overview

For Boolean functions on the hypercube: $f:\{0,1\}^{d} \rightarrow\{0,1\}$.

Undirected

- Margulis '74
- Talagrand '93

Directed

- Chakrabarty and Seshadhri '13
- Khot, Minzer, Safra '15

We generalize these inequalities to real-valued functions: $f:\{0,1\}^{d} \rightarrow \mathbb{R}$.

Motivation:

- To understand the structure of real-valued functions.
- To improve sublinear algorithms for monotonicity.

1. Explain our results in monotonicity testing.
2. Give some background on the inequalities.
3. Prove our generalized inequalities.

The d-dimensional hypercube

- Hypercube has 2^{d} vertices, the points in $\{0,1\}^{d}$.
- $x \rightarrow y$ is an edge if:
- $x_{i}=0, y_{i}=1$
- $x_{j}=y_{j}$ for all $j \in[n] \backslash\{i\}$

- f is monotone if the value of f along every edge does not decrease.
- Edge $x \rightarrow y$ is influential if $f(x) \neq f(y)$.
- Edge $x \rightarrow y$ is violated if $f(x)>f(y)$.

Distance to monotonicity

- Let dist(f, mono) denote the distance of f to monotonicity
- $\operatorname{dist}(f$, mono $)=$ least number values of f that need to be changed to make f monotone

$$
\operatorname{dist}(f, \operatorname{mono})=3
$$

Algorithmic tasks

- Monotonicity testing: ${ }^{[G] b o l d r e i c h ~ S u d a n ~ ' 96] ~[G o l d r e i c h ~ G o l d w a s s e r ~ R o n ~ ' 98] ~}$

- Approximating distance to monotonicity: [Parnas, Ron, Rubinfeld '06], [Fattal, Ron '10]
- Given oracle access to f s.t. $\operatorname{dist}(f$, mono $) \geq \alpha \cdot 2^{d} \longleftarrow$ can turn this into additive error
- Achieves c-approximation if it returns estimate $\hat{\varepsilon}$ that whp:

$$
\operatorname{dist}(f, \text { mono }) \leq \hat{\varepsilon} \leq c \cdot \operatorname{dist}(f, \text { mono })
$$

Results - Monotonicity Testing

 Chazelle '06][Fischer '04][Halevy Kushilevitz '08][Batu Rubinfeld White '05][Ailon Chazelle Seshadhri Liu '07][Bhattacharyya Grigorescu Jung Raskhodnikova Woodruff '12][Briet Chakraborty Soriano Matsliah '12][Blais Raskhodnikova Yaroslavtsev '14][Chakrabarty Seshadhri '13'14'16'19][Chen Servedio Tan '14][Belovs Blais '16][Pallavoor Raskhodnikova Varma '18][Black Chakrabarty Seshadhri '18'20]
Functions on the hypercube $\{0,1\}^{d}, r=$ number of distinct values of f.

| | | Boolean | Real-Valued (Previous) |
| :--- | :--- | :---: | :---: | Real-Valued (Our results)

Results - Distance Approximation

Functions on the hypercube: $\{0,1\}^{d}, r=$ number of distinct values of f

	Boolean	Real-Valued (Previous)	Real-Valued (Our results)
Upper bounds	$\sqrt{d \log d}$-factor [Pallavoor Raskhodnikova Waingarten '20]	$d \log r$-factor [Fattal Ron'10]	$\sqrt{d \log d \text {-factor }}$
Lower bounds	\sqrt{d} - factor (nonadaptive) [Pallavoor Raskhodnikova Waingarten '20]		no dependence on r

Isoperimetric Inequalities (Undirected)

- An edge (x, y) is influential if $f(x) \neq f(y)$.
- Let $I_{f}(x)=\#$ influential edges (x, y) s.t. $f(x)>f(y)$.
- [Talagrand '93] For a Boolean function f,

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}(x)}\right]=\Omega(\operatorname{var}(f)) \cdot 2^{d}
$$

$$
\begin{aligned}
& p_{0}=\text { fraction of zeros } \\
& \operatorname{var}(f)=p_{0}\left(1-p_{0}\right)
\end{aligned}
$$

- [Margulis '74] For a Boolean function f,

$$
\frac{(\# \text { influential edges }) \cdot(\# \text { boundary vertices })}{2^{2 d}}=\Omega\left(\operatorname{var}(f)^{2}\right)
$$

Isoperimetric Inequalities (Directed)

- An edge $x \rightarrow y$ is violated if $f(x)>f(y)$.
- Let $I_{f}^{-}(x)=\#$ outgoing violated edges at x.
- [Khot Minzer Safra '15] For a Boolean function f, [Pallavoor Raskhodnikova Waingarten '20]

- [Chakrabarty Seshadhri ' ${ }^{13]}$ For a Boolean function f,
(\#violated edges) $\cdot(\#$ boundary vertices $)=\Omega\left(\operatorname{dist}(f, \text { mono })^{2}\right)$

Our inequalities

- (Directed) For all real-valued functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$:

```
I
```

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono })) \longleftarrow \text { no dependence on the range of } f
$$

- (Undirected) For all real-valued functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$:

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}(x)}\right]=\Omega(\operatorname{dist}(f, \text { constant }))
$$

Number of values that need to be changed to make f constant

For a Boolean function, variance and normalized distance to constant are within a factor of 2

We don't care about the magnitude of change

Main inequality

- (Directed) For all real-valued functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$:

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono }))
$$

- Inequality we use for our applications.
- Implies all other inequalities mentioned in this talk.
- We show how to prove it.

Main inequality

- (Directed) For all real-valued functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$:

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono }))
$$

$$
\operatorname{dist}(f, \operatorname{mono})=3
$$

$$
\begin{aligned}
& \sum_{x \sim\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right] \\
&=\sqrt{2}+\sqrt{2}+\sqrt{1}
\end{aligned}
$$

Main inequality

- (Directed) For all real-valued functions $f:\{0,1\}^{d} \rightarrow \mathbb{R}$:

$$
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono }))
$$

- We prove it by reducing to the Boolean case, via Boolean Decomposition Theorem.

Boolean Decomposition Theorem

- It works for every partially ordered domain, which we represent as a DAG G.
- Monotonicity testing on posets first considered by [Fischer Lehman Newman Raskhodnikova Rubinfeld '02].
- Vertices $V(G)$, edges $E(G)$.
- $x \preccurlyeq y$ iff there is directed path from x to y.
- Edge $x \rightarrow y$ is violated if $f(x)>f(y)$.

$$
f: V(G) \rightarrow \mathbb{R}
$$

Boolean Decomposition Theorem

- Let VIOL (f) denote the violated edges of f.

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{1}{2} \operatorname{dist}(f$, mono $) \quad$ collectively capture distance to monotonicity of f
(2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f)$

(3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$ \square

BD Theorem \rightarrow Main inequality

$$
\begin{array}{rlr}
\sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right] & \geq \sum_{x \in \cup H_{i}}\left[\sqrt{I_{f}^{-}(x)}\right] \quad U H_{i} \text { is a subgraph of original graph } \\
& \geq \sum_{i \in[k]} \sum_{x \in H_{i}}\left[\sqrt{I_{f}^{-}(x)}\right] \longleftarrow \quad \text { the } H_{i} \text { are disjoint subgraphs }
\end{array}
$$

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$
(2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f)$
(3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$

$$
\Rightarrow \text { Main inequality } \sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono }))
$$

Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

$$
h_{t}(x)= \begin{cases}1 & \text { if } f(x) \geq t \\ 0 & \text { if } f(x)<t\end{cases}
$$

Thresholding intuition

We can reduce from real-valued to Boolean functions via thresholding.

$$
h_{t}(x)= \begin{cases}1 & \text { if } f(x) \geq t \\ 0 & \text { if } f(x)<t\end{cases}
$$

- Edges violated by h_{t} are a subset of the edges violated by f.
- But dist(f, mono) can decrease by a factor of r (\# distinct values of f)
- Can construct function so that $\operatorname{dist}(f$, mono) decreases by r for all thresholds $t \in[r]$.
- BD Theorem allows us to apply different thresholds in disjoint locations of hypercube.

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$ (2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f) \quad$ (3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$

1. How to obtain disjoint subgraphs H_{i} from a matching of vertices.
2. Specify a special matching.
3. Define Boolean functions f_{i} given subgraphs H_{i}.
4. Prove desired properties of f_{i}.

Step 1: Disjoint Subgraphs H_{i}

Definition (Sweeping Graphs) For two disjoint sets of vertices $S, T \subseteq V(G)$:
subgraph Sweep $(S, T)=$ subgraph formed from union of all directed paths from vertices in S to vertices in T

Call (S, T) a set-pair.

Step 1: Disjoint Subgraphs H_{i}

Definition (Sweeping Graphs) For two disjoint sets $S, T \subseteq V(G)$:
subgraph $\operatorname{Sweep}(S, T)=$ subgraph formed from union of all directed paths from vertices in S to vertices in T

Useful properties:

- Sweep (S, T) is an induced subgraph
- A vertex outside Sweep (S, T) cannot be both "above" and "below" Sweep (S, T)
it has a path from a vertex in in Sweep (S, T)

Step 1: Disjoint Subgraphs H_{i}

We consider matchings $M: S \rightarrow T$, where $S, T \subseteq V(G)$.

$$
\begin{aligned}
& S=\text { lower endpoints, }, \\
& T=\text { upper endpoints }
\end{aligned}
$$

M contains disjoint pairs (x, y) of vertices such that $x \preccurlyeq y$.
A pair (x, y) in M is violated if $f(x)>f(y)$.

[Fischer Lehman Newman
Raskhodnikova Rubinfeld '02].

Fact. For every function f and maximal matching M of violated pairs:

$$
\mid \text { maximal matching } \mid \leq \operatorname{dist}(f, \text { mono }) \leq 2 \mid \text { maximal matching } \mid
$$

Step 1: Disjoint Subgraphs H_{i}

Recall Sweep $(X, Y)=$ subgraph of paths from vertices in X to vertices in Y

Two set-pairs of vertices (X, Y) and (X^{\prime}, Y^{\prime}) conflict if:

- $\operatorname{Sweep}(X, Y)$ intersects $\operatorname{Sweep}\left(X^{\prime}, Y^{\prime}\right)$.

Algorithm Merge-Conflicts:

- Input: matching $M: S \rightarrow T$
- Initialize collection of set-pairs $(\{s\},\{t\})$ for all $(s, t) \in M$
- Repeat until there are no conflicts:
- if two set-pairs pairs (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ conflict, merge them,
- i.e. remove them from collection of pairs, and add new pair ($X \cup X^{\prime}, Y \cup Y^{\prime}$)

Merge-Conflicts Illustration

$$
\begin{aligned}
M & =\{(a, x),(b, y),(c, z)\} \\
\text { Collection } & =(\{a\},\{x\}),(\{b\},\{y\}),(\{c\},\{z\})
\end{aligned}
$$

Merge-Conflicts Illustration

$$
\begin{aligned}
M & =\{(a, x),(b, y),(c, z)\} \\
\text { Collection } & =(\{a\},\{x\}),(\{b\},\{y\}),(\{c\},\{z\})
\end{aligned}
$$

Merge-Conflicts Illustration

Conflict!

$$
\begin{aligned}
M & =\{(a, x),(b, y),(c, z)\} \\
\text { Collection } & =(\{a\},\{x\}),(\{b\},\{y\}),(\{c\},\{z\})
\end{aligned}
$$

Merge-Conflicts Illustration

Sweep $(\{a, b\},\{x, y\})$
union of paths from $\{a, b\}$ to $\{x, y\}$

$$
\begin{aligned}
M & =\{(a, x),(b, y),(c, z)\} \\
\text { Collection } & =(\{a, b\},\{x, y\}),(\{c\},\{z\})
\end{aligned}
$$

Merge-Conflicts Illustration

Step 1: Disjoint Subgraphs H_{i}

Algorithm Merge-Conflicts with matching $M: S \rightarrow T$ gives set-pairs $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{k}, T_{k}\right)$ such that:

- The sets S_{i} partition S, the sets T_{i} partition T.
- The subgraphs Sweep $\left(S_{i}, T_{i}\right)$ are vertex-disjoint.
- (Rematching property) For $x \in S_{i}, y \in T_{i}$ such that $x \preccurlyeq y$: there exists another matching $M^{\prime}: S \rightarrow T$ that matches (x, y).

Step 1: Disjoint Subgraphs H_{i}

Algorithm Merge-Conflicts with matching M:S $\rightarrow T$ gives set-pairs $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{k}, T_{k}\right)$ such that:

- The sets S_{i} partition S, the sets T_{i} partition T.
- The subgraphs Sweep $\left(S_{i}, T_{i}\right)$ are vertex-disjoint.
- (Rematching property) For $x \in S_{i}, y \in T_{i}$ such that $x \preccurlyeq y$: there exists another matching $M^{\prime}: S \rightarrow T$ that matches (x, y).

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$ (2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f) \quad$ (3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$
\checkmark How to obtain disjoint subgraphs H_{i} from a matching of vertices.
2. Specify a special matching.
3. Define Boolean functions f_{i} given subgraphs H_{i}.
4. Prove desired properties of f_{i}.

Step 2: Special matching

Use a special matching M (max-weight, min-cardinality):

- it maximizes weight $\sum_{(x, y) \in M}(f(x)-f(y))$,

- M is maximal
- all pairs in M are violated

Sweep $\left(S_{i}, T_{i}\right)$ are the subgraphs H_{i}.

Violation Lemma. The set-pairs $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{k}, T_{k}\right)$ satisfy:

- For all $i \in[k], x \in S_{i}, y \in T_{i}$, such that $x \leqslant y$, we have $f(x)>f(y)$.
will need to be more careful about thresholding
can threshold while preserving violations.

Step 2: Special matching

Violation Lemma. The set-pairs $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{k}, T_{k}\right)$ obtained from the special matching M satisfy: For all $i \in[k], x \in S_{i}, y \in T_{i}$, s.t. $x \preccurlyeq y$, we have $f(x)>f(y)$.

```
```

weight: }\mp@subsup{\sum}{(x,y)\inM}{}(f(x)-f(y)

```
```

```
```

weight: }\mp@subsup{\sum}{(x,y)\inM}{}(f(x)-f(y)

```
```


Proof.

- Suppose that for some $x \in S_{i}, y \in T_{i}$, with $x \leqslant y$ we have $f(x) \leq f(y)$.
- Use the rematching property to get a new matching $M^{\prime}: S \rightarrow T$ that matches (x, y).
- M^{\prime} has the same weight as M, since the endpoints have not changed.
- $M^{\prime} \backslash(x, y)$ has weight at least as big as M, because $f(x)-f(y) \leq 0$.
- But $M^{\prime} \backslash(x, y)$ has fewer pairs. Contradiction.

Step $1+2$ summary

- Start with special matching $M: S \rightarrow T$ (max weight, min-cardinality).
- M is a maximal matching of violated pairs: $|M|<\operatorname{dist}(f$, mono $)<2|M|$
- Run algorithm Merge-Conflicts to obtain set-pairs $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \ldots,\left(S_{k}, T_{k}\right)$
- The subgraphs Sweep $\left(S_{i}, T_{i}\right)$ are vertex-disjoint.
- (Violation Lemma) For $x \in S_{i}, y \in T_{i}$ such that $x \leqslant y$ we have $f(x)>f(y)$.

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$
(2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f)$
(3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$
\checkmark How to obtain disjoint subgraphs H_{i} from a matching of vertices.
\checkmark Specify a special matching.
3. Define Boolean functions f_{i} given subgraphs H_{i}.
4. Prove desired properties of f_{i}.

Step 3: Define Boolean Functions

Given $\left(S_{i}, T_{i}\right)$, define $f_{i}: V(G) \rightarrow\{0,1\}$
max value of f achieved by points in T_{i} above z
individual threshold

- $f(z)>\max _{x \in T_{i}, z \leqslant x} f(x)$, then $f_{i}(z)=1$

Z

- $f(z) \leq \max _{x \in T_{i}, z \preccurlyeq x} f(x)$, then $f_{i}(z)=0$
not in $\operatorname{Sweep}\left(S_{i}, T_{i}\right)$

Step 3: Define Boolean Functions

Given $\left(S_{i}, T_{i}\right)$, define $f_{i}: V(G) \rightarrow\{0,1\}$

Z

- above, then $f_{i}(z)=1$
- not above, then $f_{i}(z)=0$

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$ (2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f) \quad$ (3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$
\checkmark How to obtain disjoint subgraphs H_{i} from a matching of vertices.
\checkmark Specify a special matching.
\checkmark Define Boolean functions f_{i} given subgraphs H_{i}.
4. Prove desired properties of f_{i}.

Step 4: Proof of BD Theorem

(1) The functions $\boldsymbol{f}_{\boldsymbol{i}}$ preserve $\operatorname{dist}(\boldsymbol{f}$, mono).

Vertex $z \in T_{i}$, and z above z
By Violation Lemma.

- Each vertex in S_{i} will have value 1.

- If $z \in S_{i}$, then $f(z)>f(x)$ for all $x \in T_{i}$ above z.
- $\Rightarrow f_{i}$ has matching of violated pairs $M_{i}: S_{i} \rightarrow T_{i}$.
- M_{i} is restriction of M to Sweep $\left(S_{i}, T_{i}\right)$.
- All the M_{i} for $i \in[k]$ are disjoint.

Step 4: Proof of BD Theorem

(2) Edges violated by $\boldsymbol{f}_{\boldsymbol{i}}$ are contained in $\operatorname{Sweep}\left(\boldsymbol{S}_{\boldsymbol{i}}, \boldsymbol{T}_{\boldsymbol{i}}\right)$

Consider edge $x \rightarrow y$ not in Sweep $\left(S_{i}, T_{i}\right)$
y above $\operatorname{Sweep}\left(S_{i}, T_{i}\right), f_{i}(y)=1$.

Step 4: Proof of BD Theorem

(2) Edges violated by $\boldsymbol{f}_{\boldsymbol{i}}$ are contained in $\operatorname{Sweep}\left(\boldsymbol{S}_{\boldsymbol{i}}, \boldsymbol{T}_{\boldsymbol{i}}\right)$

Consider edge $x \rightarrow y$ not in Sweep $\left(S_{i}, T_{i}\right)$
x below Sweep $\left(S_{i}, T_{i}\right), f_{i}(x)=0$.

Step 4: Proof of BD Theorem

(2) Edges violated by $\boldsymbol{f}_{\boldsymbol{i}}$ are contained in $\operatorname{Sweep}\left(\boldsymbol{S}_{\boldsymbol{i}}, \boldsymbol{T}_{\boldsymbol{i}}\right)$

Consider edge $x \rightarrow y$ not in Sweep $\left(S_{i}, T_{i}\right)$

Step 4: Proof of BD Theorem

(3) Edges violated by $\boldsymbol{f}_{\boldsymbol{i}}$ are violated by \boldsymbol{f}

Consider edge $x \rightarrow y$ violated by f_{i} (in Sweep $\left(S_{i}, T_{i}\right)$)
$f_{i}(x)=1, f_{i}(y)=0$
For $t \in T_{i}$ such that $y \leqslant t$, then $x \leqslant t$.
Therefore:

$$
f(x)>\max _{t \in T_{i}, x \leqslant t} f(t) \geq \max _{t \in T_{i}, y \leqslant t} f(t) \geq f(y)
$$

\Rightarrow Edge $x \rightarrow y$ violated by f

Proof of BD Theorem

BD Theorem: Let G be a DAG, and $f: V(G) \rightarrow \mathbb{R}$ a nonmonotone function. For some $k \geq 1$, there exist Boolean functions $f_{1}, f_{2}, \ldots, f_{k}: V(G) \rightarrow\{0,1\}$ and disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ of G such that:
(1) $\sum_{i \in[k]} \operatorname{dist}\left(f_{i}\right.$, mono $) \geq \frac{\operatorname{dist}(f, \text { mono })}{2}$
(2) $\operatorname{VIOL}\left(f_{i}\right) \subseteq \operatorname{VIOL}(f)$
(3) $\operatorname{VIOL}\left(f_{i}\right) \subseteq E\left(H_{i}\right)$
\checkmark How to obtain disjoint subgraphs H_{i} from a matching of vertices.
\checkmark Specify a special matching.
\checkmark Define Boolean functions f_{i} given subgraphs H_{i}.
$\checkmark \quad$ Prove desired properties of f_{i}.

$$
\Rightarrow \text { Main inequality } \sum_{x \in\{0,1\}^{d}}\left[\sqrt{I_{f}^{-}(x)}\right]=\Omega(\operatorname{dist}(f, \text { mono }))
$$

Conclusion

- Improved sublinear algorithms for monotonicity.
- Generalized isoperimetric inequalities.
- Proved the Boolean Decomposition Theorem.

Open Question. Do the isoperimetric inequalities hold for other domains?

- Specifically, the hypergrid domain $[n]^{d}$.
- Margulis type inequality holds [Black Chakrabarty Seshadhri '18]. What about Talagrand?
- It would suffice to show such inequality for the Boolean case.
- Use our BD Theorem to generalize to real-valued functions.
- Improve algorithms for monotonicity testing on hypergrid.

