
Measuring the Complexity of Boolean Functions and the Sensitivity

Conjecture

Iden Kalemaj∗

December 21, 2020

1 Introduction

The Sensitivity Conjecture of Nisan and Szegedy [NS94] states that two measures of the complexity of Boolean
functions, namely sensitivity and block sensitivity, are polynomially related. This conjecture remained open
for about thirty years until Hao Huang [Hua19] proved it in the positive with a remarkably short proof. It
was known for a long time that block sensitivity was polynomially related to many other important measures
of the complexity of Boolean functions [Nis91, NS94, BBC+01, Mid04, Tal13]. Until the result of Hao Huang,
the sensitivity resisted such classification.

In this article we provide a proof of the Sensitivity Conjecture of [Hua19] which is self-contained with
few exceptions. For an entirely self-contained survey of the results that comprise the proof of the Sensitivity
Conjecture we refer the reader to [KSP20]. Our survey is much shorter, yet highlights the important
contributions that went into this line of work. To familiarize the reader with measures of the complexity of
Boolean functions, we provide some definitions and examples, while also stating some results on how these
measures are related. Detailed surveys of such results can be found in [BdW02, HKP11]. Finally, towards
the goal of making this exposition self-contained, we provide a summary of key facts from linear algebra and
Fourier analysis of Boolean functions.

We consider Boolean functions f : {0, 1}n → {0, 1} on the n-dimensional hypercube. Let Qn denote the
domain {0, 1}n. Sensitivity and block-sensitivity are two measures of the complexity of a function f . For
x ∈ Qn and S ⊆ [n], let xS denote the point in Qn obtained by flipping all of the bits xi such that i ∈ S. If
S = {i} we will use the shorthand xi instead of x{i}.

Definition 1.1 (Sensitivity). The sensitivity of f : {0, 1}n → {0, 1} at x, denoted sf (x), is the number
of points y that differ from x in exactly one bit and satisfy f(x) 6= f(y). The sensitivity s(f) of f is the
maximum over all x ∈ Qn of sf (x).

Sensitivity measures how many bits of x have to be flipped in order to change the value of f . As an
example, consider the OR-function f(x) = x1 ∨ x2 ∨ . . . xn. Let |x| denote the number of coordinates of x
with value 1. If f(x) = 0, then sf (x) = n, because changing any of the bits of x from 0 to 1 will change the
function value. If |x| ≥ 2, then sf (x) = 0, because changing any single bit of x cannot change the function
value. Therefore sf (x) = n.

Definition 1.2 (Block Sensitivity). The block sensitivity of f : {0, 1}n → {0, 1} at x, denoted bsf (x), is the
maximum number of disjoint subsets of the coordinates B1, B2, . . . , Bk ⊆ [n] such that f(x) 6= f(xBj ) for all
j ∈ [k]. The block sensitivity bs(f) is the maximum value of bsf (x) over all x ∈ Qn.

Clearly, s(f) ≤ bs(f) since for each x ∈ Qn we can let each of the sets B1, B2, . . . , Bk contain exactly
one coordinate from the coordinates i such that f(x) 6= f(xi). To illustrate block sensitivity, we describe a
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function of Rubinstein [Rub95] that gives a quadratic separation between s(f) and bs(f). This separation
was later improved by [Vir11, AS11].

Example 1.3 ([Rub95]). Let n = k2, where k is even. Divide the n coordinates into
√
n = k blocks Bi, i ∈ [k]

of k variables each, where Bi = [(i − 1)k + 1, ik]. Define f(x) = 1 if and only if there exists at least one
block Bi and two consecutive coordinates 2j, 2j + 1 ∈ Bi such that x2j = x2j+1 = 1 and the remaining k − 2
coordinates of x in Bi have value 0.

Consider x = 0n. Then f(x) = 0. We can define the disjoint sensitive sets of x to be the pairs of
consecutive even-odd coordinates in each block Bi. Flipping any such pair of coordinates changes the value
of f from 0 to 1. There are k · k2 = n

2 such pairs. Thus bsf (0n) = n/2 and one can see that bs(f) = n/2. We
argue that s(f) =

√
n. Consider x such that for each block Bi, i ∈ [k], there is exactly one coordinate 2j ∈ Bi

such that x2j = 1 and all other coordinates of x in Bi are 0. Then f(x) = 0. For each block Bi, changing
the coordinate 2j + 1 ∈ Bi from 0 to 1 will change the value f(x) from 0 to 1. Thus sf (x) = k =

√
n, and

one can see that s(f) =
√
n.

Hao Huang showed that sensitivity and block-sensitivity are polynomially-related.

Theorem 1.4 (Sensitivity Conjecture [Hua19]). For every Boolean function f : {0, 1}n → {0, 1}, the sensi-
tivity s(f) and block-sensitivity bs(f) satisfy:

bs(f) ≤ s(f)4.

While the definition of block sensitivity might seem unusual, it was known for a long time that it
is polynomially related to many other measures of the complexity of Boolean functions, such as decision
tree depth, certificate complexity, and degree of the multilinear polynomial representing the Boolean func-
tion [Nis91, NS94, BBC+01, Mid04, Tal13]. These relations were known for deterministic, randomized, and
quantum decision tree complexity. Sensitivity was the only measure which resisted classification until the
result of [Hua19].

Huang [Hua19] proved the sensitivity conjecture by proving an equivalent result on induced subgraphs
of the hypercube Qn. For a graph G, we denote by V (G) its vertex-set and E(G) the set of edges (u, v)
such that u, v ∈ V (G) are adjacent. Viewed as a graph, Qn contains 2n vertices: the 0/1 vectors or strings
of length n. For this graph, (x, y) ∈ E(Qn) if there exists some i ∈ [n] such that xi 6= yi, and xi = yj for all
j ∈ [n] \ {i}.

Theorem 1.5 (Induced subgraphs [Hua19]). Let H be an induced subgraph of the n-dimensional hypercube
Qn with 2n−1 + 1 vertices, and let ∆(H) be the maximum degree of H. Then

∆(H) ≥
√
n.

Moreover, this inequality is tight when n is a perfect square.

Note that the subgraph of Qn induced by the vertices with an even number of 1-coordinates has 2n−1

vertices and no edges, and thus has maximum degree 0. Adding just one extra vertex to this subgraph would
make the maximum degree jump to

√
n. Theorem 1.5 is tight as shown by a construction of Chung, Füredi,

Graham, and Seymour [CFGS88].
The equivalence between the problem of induced subgraphs of Qn and the problem of complexity measures

of Boolean functions was established by Gotsman and Linial [GL92]. For an induced subgraph H of Qn, let
Qn−H be the subgraph induced by the vertices V (Qn)\V (H). Define Γ(H) to be max(∆(H),∆(Qn−H)).
For a Boolean function f , its degree deg(f) is the degree of the unique multilinear polynomial representing
f (see Section 2 for how to obtain this polynomial via Fourier decomposition).

Theorem 1.6 (Equivalence theorem [GL92]). The following are equivalent for any function h : N→ R.

(a) For any induced subgraph H of Qn with |V (H)| 6= 2n−1, we have Γ(H) ≥ h(n).

(b) For any Boolean function f : Qn → {0, 1}, we have s(f) ≥ h(deg(f)).
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Huang applied Theorem 1.6 with the function h(n) =
√
n. Suppose H is an induced subgraph of Qn

with V (H) 6= 2n−1. Then either H or Qn − H will have at least 2n+1 vertices. By Theorem 1.5, either
∆(H) ≥

√
n or ∆(Qn −H) ≥

√
n. We obtain Γ(H) ≥

√
n. As a corollary, we have:

Theorem 1.7 ([Hua19]). For every Boolean function f ,

s(f) ≥
√

deg(f).

The final ingredient in the proof of Theorem 1.4 is a result of Nisan and Szegedy [NS94], strengthened
by Tal [Tal13], who show that for every Boolean function bs(f) ≤ deg(f)2. Combining this result with
Theorem 1.7 concludes the proof of the Sensitivity Conjecture.

We remark that Theorem 1.7 is tight as demonstrated by the following folklore example.

Example 1.8 (AND-of-ORs). Let f be a function on k2 variables. Partition the coordinates in k blocks of
k coordinates, so that block i contains coordinates xi1, xi2, . . . , xik. Define

f(x11, x12, . . . , xkk) =

k∧
i=1

k∨
j=1

xij .

Then f has degree k2 and sensitivity k. If x is a lower endpoint of a sensitive edge, then there is a block i
of coordinates xi1, xi2, . . . xik such that the coordinates of x are all 0 for that block, and x has at least one
coordinate with value 1 in the other k − 1 blocks. Then x is incident with exactly k sensitive edges, one for
every coordinate in the block with all 0 coordinates.

However, the exponent of 4 in Theorem 1.4 may not be tight. Nisan and Szegedy suggested a quadratic
upper bound, and the best separation between s(f) and bs(f) is quadratic, as we saw in Ex. 1.3.

Organization In Section 2 we recall a few concepts from linear algebra and Fourier analysis used in the
proofs of the main theorems. We show a Fourier-analytic proof of Theorem 1.6 in Section 3. We prove
Huangs’s theorem on induced subgraphs (Theorem 1.5) in Section 4. In Section 5 we highlight some results
on the connections between various measures of the complexity of Boolean functions.

2 Preliminaries

This section provides definitions and states results from Fourier analysis and linear algebra used in the proofs
of the main theorems. The reader familiar with these concepts may skip the section.

2.1 Eigenvalues and Eigenvectors

Let’s first recall the notion of vector spaces and dimension. A vector space V in Rn is a set of vectors v ∈ Rn
such that the all-zero vector is in V ; for any two vectors u,v ∈ V , it also holds that u + v ∈ V ; for any
vector v and scalar c ∈ R, it holds that cv ∈ V . We denote all vectors by boldface lower-case letters. The
all-zero vector is denoted by 0.

A set of vectors v1,v2, . . . ,vd ∈ Rn are called linearly independent if there do not exist c1, c2, . . . , cd such
that c1v1 + c2v2 + · · ·+ cdvd = 0 and not all c1, c2, . . . , cd are equal to zero. A set of linearly independent
vectors v1,v2, . . . ,vd ∈ V is a basis for V if every vector in V can be expressed as a linear combination of
the d vectors. The dimension of V is the size d of a basis v1,v2, . . . ,vd for V .

Given a matrix A ∈ Rn×n, an eigenvector of A is a vector v ∈ Rn such that Av = λv for some scalar
λ ∈ R. The scalar λ is eigenvalue corresponding to v.

For an eigenvalue λ of A, let Vλ = {v : Av = λv} be the set of eigenvectors corresponding to λ. Then
Vλ is a vector space in Rn, since:

• A0 = 0 = λ0, and so 0 ∈ Vλ.
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• If u,v ∈ Vλ then A(u + v) = Au +Av = λu + λv = λ(u + v). Hence u + v ∈ Vλ.

• If v ∈ Vλ then A(cv) = cAv = cλv = λ(cv), and so cv ∈ Vλ.

The multiplicity of an eigenvalue λ is the dimension of the vector space Vλ.
The trace tr(A) of A is the sum of the diagonal entries of A, that is tr(A) =

∑
i∈[n]Aii. We make use of

the following folklore fact about the trace.

Fact 2.1. The trace of a matrix A equals the sum of its eigenvalues counted with multiplicity.

2.2 Fourier Analysis of Boolean Functions on the Hypercube

We state some results needed for our discussion of the equivalence result of Gotsman and Linial (Theorem 1.6).
In the discussion of Fourier analysis, it is convenient to represent Boolean functions as f : {−1, 1}n → {−1, 1}.

Fact 2.2. Every function f : {−1, 1}n → R can be expressed uniquely as a multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where χS(x) =
∏
i∈S xi.

The coefficients f̂(S) are the Fourier coefficients of f . The degree of f , deg(f), equals the size of the

largest set S ⊆ [n] such that f̂(S) 6= 0.

Fact 2.3. The Fourier coefficients f̂(S) of f are given by

f̂(S) = E
x∼{−1,1}n

[f(x)χS(x)].

Fact 2.4. For a function f : {−1, 1}n → R it holds Ex∼{−1,1}n [f ] = f̂(∅).

3 The Equivalence Theorem of Gotsman and Linial

In this section we prove the equivalence result of Gotsman and Linial for two problems on the hypercube
as stated in Theorem 1.6 and restated below. Our discussion follows that of [KSP20], which differs slightly
from the original proof of Gotsman and Linial.

Theorem 3.1 (Restated Theorem 1.6). The following are equivalent for any function h : N→ R.

(a) For any induced subgraph H of Qn with |V (H)| 6= 2n−1, we have Γ(H) ≥ h(n).

(b) For any Boolean function f : Qn → {0, 1}, we have s(f) ≥ h(deg(f)).

Proof of Theorem 1.6. We first show that (b) is equivalent to the the following:

(b′) For any Boolean function f : Qn → {0, 1} with deg(f) = n we have s(f) ≥ h(n).

Clearly (b) implies (b′). We show that (b′)⇒ (b).
Suppose f has deg(f) = d, where d ≤ n. Fix a monomial of degree d in the multilinear polynomial

representation of f . Without loss of generality, assume this monomial is x1 . . . xd. Define g(x1 . . . xd) =
f(x1 . . . xd00 . . . 0). Then deg(g) = d. Consider an edge between x = x1x2 . . . xd and xi for i ∈ [d] in the
hypercube Qd. It corresponds to an edge between x0 . . . 0 and xi0 . . . 0 in the hypercube Qn. Note that
g(x) 6= g(xi) if and only if f(x0 . . . 0) 6= f(xi0 . . . 0), by definition of g. It follows that s(f) ≥ s(g) ≥ h(d).

(a) ⇒ (b′). We prove the contrapositive. Suppose f is a Boolean function with deg(f) = n such that
s(f) < h(n). As an implication, we construct an induced subgraph H of Qn with |V (H)| 6= 2n−1 such that
Γ(H) < h(n).
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The proof uses Fourier analysis, so for the remainder of the proof we assume that f is a Boolean function
f : {−1, 1}n → {−1, 1}. Let p(x) : {−1, 1}n → {−1, 1} be the parity function p(x) = x1x2 . . . xn, so that
p(x) = 1 if x has even parity and p(x) = −1 otherwise. The vertex set of H will be:

V (H) = {x ∈ {−1, 1}n | f(x)p(x) = 1}

H contains all the vertices such that the parity of that vertex equals the value of f . We show that f̂(S) =

f̂p([n] \ S) for all S ⊆ [n]. To see this, assume that S = {1, 2, . . . , i}.

f̂p([n] \ S) = E
x∼{−1,1}n

[f(x)p(x)χ[n]\S(x)] = E
x∼{−1,1}n

[f(x)(x1x2 . . . xn)(xi+1xi+2 . . . xn)]

= E
x∼{−1,1}n

[f(x)x1x2 . . . xi]

= E
x∼{−1,1}n

[f(x)χS(x)] = f̂(S).

The proof follows similarly for all S. As a consequence, f̂([n]) = f̂p(∅). Since deg(f) = n, then f̂(n) 6= 0,

by the Fourier decomposition of f . It follows that Ex[f(x)p(x)] = f̂p(∅) 6= 0 (see Fact 2.4). As a result,
|V (H)| 6= 2n−1. Note that all the edges in Qn are between vertices with even parity and vertices with odd
parity. The vertex xi is adjacent to x in H if and only if fp(x) = fp(xi) = 1, which happens if and only
if f(x) 6= f(xi). Therefore degH(x) = sf (x). By a similar argument, degQn−H(x) = sf (x). It follows that
Γ(H) = s(f) < h(n). This concludes the proof.

(b′)⇒ (a). To show this, note that all statements in the proof above also hold in the reverse direction. �

4 Proof of the Sensitivity Conjecture

In this section we prove Theorem 1.5 which is the main result in the proof of the Sensitivity Conjecture.
One key insight in the proof of Theorem 1.5 is that the maximum degree of a graph can be lower bounded
by the largest eigenvalue of the adjacency matrix of that graph. Recall that the adjacency matrix AH of an
n-vertex graph H is an n × n symmetric matrix whose rows and columns are indexed by V (H) and it has
entries Aij = 1 if (i, j) ∈ E(H) and 0 otherwise. However, this insight alone is not enough, and Huang proves
that the maximum degree of H is lower bounded by the largest eigenvalue of every matrix whose entries are
obtained from AH by flipping an arbitrary subset of the 1-entries to (−1). This is shown in Lemma 4.3.

Huang starts with the adjacency matrix of the hypercube graph Qn and obtains a special matrix An by
flipping a specific subset of the 1-entries to (−1). Crucially, the eigenvalues of An are precisely

√
n and −

√
n,

each of multiplicity 2n−1 (Lemma 4.2). For the induced subgraph H of Qn, consider the submatrix AH of
An, which contains the rows and columns of An labeled by the vetices of H. Using the Cauchy Interlace
Theorem (Lemma 4.1) one can bound the eigenvalues of AH by the eigenvalues of An to finally obtain a
bound on ∆(H).

In this section we also present a proof of Theorem 1.5 which does not use the Cauchy Interlace Theorem,
and instead uses basic linear algebra to bound the largest eigenvalue of AH . For that reason, we do not
present a proof of the Interlace Theorem, and encourage the reader with rusty linear algebra to review
Section 2.

Lemma 4.1 (Cauchy’s Interlace Theorem). Let A be a symmetric n × n matrix and let B be a m × m
submatrix of A, for some m < n, obtained by deleting the same set of rows and columns from A. Let
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) denote the eigenvalues of A, and let λ1(B) ≥ λ2(A) ≥ · · · ≥ λm(B) be the
eigenvalues of B. For all i ∈ [m] we have

λi(A) ≥ λi(B) ≥ λi+n−m(A).

Lemma 4.2. Define a sequence of symmetric square matrices iteratively as follows,

A1 =

[
0 1
1 0

]
, An =

[
An−1 I
I −An−1

]
.
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Then An is a 2n × 2n matrix with eigenvalues
√
n and −

√
n, each of multiplicity 2n−1.

Proof. We show that A2
n = nI via an induction argument on n. This clearly holds for n = 1. By the

induction hypothesis,

A2
n =

[
A2
n−1 + I 0

0 A2
n−1 + I

]
=

[
(n− 1)I + I 0

0 (n− 1)I + I

]
= nI.

Thus, the claim is true for all n ≥ 1.
If λ is an eigenvalue of some matrix B with respective eigenvector v, then λ2 will be an eigenvalue of B2,

since:
B2v = B(Bv) = λBv = λ2v.

The only eigenvalue of nI is n, since nIv = nv. Since A2
n has eigenvalue n of multiplicity n, then the

eigenvalues of An will be either
√
n or −

√
n. But note that the trace of An is 0 (this can be easily seen

by the construction, or more formally shown by induction). The trace of a matrix equals the sum of its
eigenvalues (counted with multiplicity). An is invertible (with inverse 1

nAn), so 0 is not an eigenvalue of An.
It follows that An must have eigenvalues

√
n and −

√
n each of multiplicity 2n−1. �

Lemma 4.3. Let H be a graph of m vertices. Let A be a symmetric matrix with values in {−1, 0, 1}
whose rows and columns are indexed by V (H). Suppose Au,v = 0 if u and v are not adjacent in H, and
Au,v ∈ {−1, 0, 1} otherwise. Let λ1 denote the largest eigenvalue of A. Then:

∆(H) ≥ |λ1|. (1)

Proof. Suppose v ∈ Rm is the corresponding eigenvector for λ1 so that Av = λ1v. Let vi be the coordinate
of v with the largest absolute value, where i ∈ [m]. Then:

|λ1vi| = |(Av)i| =
∣∣∣∣ m∑
j=1

Aijvj

∣∣∣∣ ≤ m∑
j=1

|Aij ||vj |.

Note that |Aij | = 0 whenever i and j are not adjacent in H, and in general |Aij | ≤ 1. Therefore:

m∑
j=1

|Aij ||vj | =
∑

j s.t. (i,j)∈E(H)

|Aij ||vj | ≤
m∑

(i,j)∈E(H)

|vj | ≤ ∆(H)|vi|.

It follows that ∆(H) ≥ |λ1|. �

A first proof. With these lemmas in hand, we present the first proof of Theorem 1.5, restated below,
which uses the Cauchy Interlace Theorem.

Theorem 4.4 (Restated Theorem 1.5). Let H be an induced subgraph of the n-dimensional hypercube Qn
with 2n−1 + 1 vertices, and let ∆(H) be the maximum degree of H. Then

∆(H) ≥
√
n.

Moreover, this inequality is tight when n is a perfect square.

Proof of Theorem 1.5. Let An be defined in Lemma 4.2. Consider another sequence of matrices defined as:

A′1 =

[
0 1
1 0

]
, A′n =

[
A′n−1 I
I A′n−1

]
. (2)

Observe that A′n is the adjacency matrix of the hypercube graph Qn. One can see this by induction,
considering two subcubes of Qn, the one for which xn = 0 and the one for which xn = 1. Then A′n−1 is the
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adjacency matrix for each subcube, and the identity matrix I corresponds to the matching between the two
subcubes, i.e. the edges from x to xn. Note also that A′n can be obtained from An by flipping all the (−1)
values of An to 1. Therefore the matrix An and the graph Qn satisfy the conditions of Lemma 4.3.

For an induced subgraph H of Qn with (2n−1 + 1)-vertices, let AH be the submatrix of An obtained by
only considering the columns and rows of An indexed by V (H). Then AH and H also satisfy the conditions
of Lemma 4.3. As a result,

∆(H) ≥ |λ1(AH)|. (3)

From Lemma 4.2, the eigenvalues of An are
√
n and −

√
n, each of multiplicity 2n−1. The matrix AH is

a (2n−1 + 1)× (2n−1 + 1) submatrix of An. By the Cauchy Interlace Theorem:

λ1(AH) ≥ λ1+2n−2n−1−1(An) = λ2n−1(An) =
√
n. (4)

It follows that ∆(H) ≥
√
n which completes the proof. �

Alternate proof. It is possible to prove Theorem 1.5 using more basic linear algebra and without the
Cauchy Interlace Theorem. The following proof formalizes the comment of Shalev Ben-David in blog post
[Aro19].

Alternate Proof of Theorem 1.5. Let An be the matrix from Lemma 4.2 and let AH be the submatrix obtained
from A by considering only the rows and columns indexed by the vertices of a (2n−1 + 1)-vertex induced
subgraph H of Qn.

We let N = 2n for ease of presentation. The matrix An is an N ×N matrix that has an eigenvalue
√
n

with multiplicity N/2. Let U be the subspace of RN consisting of all eigenvectors of An with eigenvalue
√
n,

i.e.:
U = {u ∈ RN |Anu =

√
nu}

Then U has dimension N/2 by the multiplicity of the eigenvalue
√
n. Let S = [N ] \V (H) denote the indices

of the rows and the columns of An which do not belong to AH (i.e. the rows and columns we remove from
An to obtain AH). For a vector v ∈ RN , let v|S denote the subvector obtained by removing entries of v
whose indices are in S. Furthermore, consider the subspace V of vectors whose S-indices are 0:

V = {v ∈ RN | vi = 0 for all i ∈ S}.

Observe that for a vector v ∈ V we have Anv = AHv|S . Therefore, if v ∈ V is an eigenvector of An then
v|S is an eigenvector of AH with the same eigenvalue.

The subspace V has dimension N/2 + 1, since |S| = N/2 − 1. The dimension of U is N/2 and the
dimension of RN is N . It follows that U ∩ V has dimension at least 1, for U ∩ V is a subspace itself, and if
it had dimension 0 we would obtain an (N + 1)-dimensional subspace of RN from the union of U and V . It
follows that there is at least one non-zero vector v ∈ U ∩ V . By our argument, v|S is an eigenvector of AH
with eigenvalue

√
n. It follows that λ1(H) ≥

√
n.

�

5 Measuring the Complexity of Boolean Functions

Recall the definitions of degree, sensitivity, and block sensitivity. As we have mentioned, they are polyno-
mially related to two measures of function complexity: decision tree depth and certificate complexity. In
particular, decision tree depth is a very natural measure of computational complexity, since decision trees
give an algorithm for computing the function. Some relationships between these measures are straightforward
and we comment on them. We then summarize, without proofs, the known polynomial relations between
these measures.
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Figure 1: A decision tree for computing the majority function on 3 variables [KSP20]
.

Decision tree depth. Consider an algorithm for computing the value of f : Qn → {0, 1} at input x. The
algorithm makes queries to the input x by asking for the value of x at index i ∈ [n]. We can represent such
an algorithm as a rooted binary decision tree, whose nodes are labeled by variables xi and edges are labeled
by the values 0 or 1 of the corresponding variable. The leaf nodes are the values of the function f at the
input x whose bits are indicated by the edge labels for the path ending at that leaf. See Fig. 1 for an example
of a decision tree for the majority function on 3 variables.

Given a decision tree Af for computing f , let D(Af ) denote the depth of Af , which is the longest path
from the root to a leaf in the decision tree. The depth gives the worst-case query complexity of the algorithm
Af . There can be different decision trees for computing the function f . One way to quantify the complexity
of computing f is to consider the depth of the optimal decision tree for computing f . The decision tree
complexity of f is defined as:

D(f) = min
Af

D(Af ).

We focus on deterministic decision trees, although many results in this article have randomized and
quantum analogues.

To see that s(f) ≤ bs(f) ≤ D(f), let B1, B2, . . . , Bbsf (x) be disjoint sensitive blocks for x ∈ {0, 1}n. On
input x, the decision tree must query at least one bit in each Bi, for otherwise we could flip the values of
the bits of x in the unqueried block Bi and change the value of f so that the decision tree would not notice
such change.

It is not too hard to show that we can obtain a multilinear polynomial for f from the decision tree Af
that computes f with degree at most the depth of Af . Therefore deg(f) ≤ D(f).

Certificate complexity. The certificate complexity C(f) of f measures how many of the n variables have
to be assigned a value in order to fully determine the value of f . For a set S ⊆ [n], let x|S denote the string

in {0, 1}|S|, obtained by removing from x all bits xi such that i /∈ S. Then Cf (x) is the minimum size of a
set S such that x|S = y|S implies f(x) = f(y). This means that once the bits of x in S are revealed we can
determine the value f(x). The certificate complexity is defined as C(f) = maxx Cf (x).

Consider the OR-function f(x) = x1 ∨ x2 · · · ∨ xn. If f(x) = 1, then Cf (x) = 1. because revealing one of
the bits i such that xi = 1 we can fix f(x) = 1. If f(x) = 0 then Cf (x) = n, because we need to reveal all
of the bits of x to fix f(x) = 0. Therefore C(f) = n.

Note that C(f) ≤ D(f). Let S be a minimal certificate for x. On input x, if the decision tree does not
query |S| bits of x, then it cannot fix the value of f(x).

For all x ∈ {0, 1}d, we have sf (x) ≤ bsf (x) ≤ Cf (x), since a certificate for x must contain at least one
bit from each sensitive block for x. Therefore s(f) ≤ bs(f) ≤ C(f). On the other hand, Nisan [Nis91]
showed that C(f) ≤ s(f)bs(f). To see this, consider disjoint sensitive blocks B1, B2, . . . , Bb for x such that
b = bsf (x). It is not too hard to show that |Bi| ≤ s(f) for all i ∈ [b] and S = ∪Bi is a certificate for x.
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Polynomial relations We summarize relations known between these complexity measures. Each line
gives upper bounds for one measure.

1. bs(f) ≤ s(f)4 [Hua19], bs(f) ≤ C(f), bs(f) ≤ D(f), bs(f) ≤ deg(f)2 [Tal13].

2. s(f) ≤ bs(f) ≤ D(f), s(f) ≤ C(f), s(f) ≤ deg(f)2 [Tal13].

3. D(f) ≤ s(f)bs(f)2 ≤ bs(f)3 [Nis91], D(f) ≤ deg(f)3 [Mid04], D(f) ≤ C(f)2 [Mid04].

4. C(f) ≤ s(f)b(f) ≤ bs(f)2 [Nis91], C(f) ≤ D(f) ≤ deg(f)3 [Mid04].

5. deg(f) ≤ s(f)2 [Hua19], deg(f) ≤ D(f) ≤ C(f)2 [Mid04].
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