Compendium of optimization problems admitting highly parallel approximations

Jeffrey Finkelstein
Computer Science Department, Boston University
September 10, 2016

This is a listing of classes of optimization problems and known optimization problems which are members of those classes. See Section 2 of the corresponding paper for definitions of the complexity classes.

Warning: some of these may not be correctly classified and need verification!

- **NNCO:**
 - [Maximum Variable Weighted Satisfiability](#) [4, Theorem 3.1]
 - [Theorem 8.3]

- **ApxNCO:**
 - [Maximum k-CNF Satisfiability](#) [1, Theorem 8.6]
 - [Maximum Acyclic Subgraph](#) [2, Section 7.4]
 - [Minimum k-Center](#) [2, Section 7.4]
 - [k-Switching Network](#) [2, Section 7.4]
 - [Maximum Bounded Weighted Satisfiability](#) [5, Theorem 4]

- **RNCAS:**
 - [Minimum Metric Traveling Salesperson](#) [2, Theorem 7.1.1]

- **NCAS:**
 - [Maximum k-CSP](#) [6, Corollary 13]
 - [Maximum Independent Set for Planar Graphs](#) [2, Theorem 6.4.1]
• **FNCAS:**
 - Subset Sum [2, Theorem 4.1.4]
 - Maximum Clause Weighted CNF Satisfiability [6, Theorem 8]
 - Minimum Weight Vertex Cover [2, Theorem 5.3.6]
 - 0-1 Knapsack [3, Theorem 2]
 - Bin Packing [3, Theorem 3]

• **PO ∩ NNCO:**
 - Linear Programming

• **PO ∩ ApxNCO:**
 - Induced Subgraph of High Weight for Linear Extremal Properties [2]

• **PO ∩ NCAS:**
 - Maximum Matching [2, Theorem 5.2.1]
 - Maximum Weight Matching [2, Theorem 5.2.2]
 - Positive Linear Programming [2, Theorem 5.1.11] [7]
 - Maximum Flow [2, Theorem 5.2.2]

• **PO ∩ FRNCAS:**
 - Maximum Flow [2, Theorem 4.5.2]
 - Maximum Weight Perfect Matching [2, Theorem 4.5.2]
 - Maximum Weight Matching [2, Theorem 4.5.2]

References

