
Glasses Detection and Extraction by Deformable Contour

Zhong Jing & Robert Mariani
RWCP �, KRDL Multi-Modal Function Laboratory

Kent Ridge Digital Laboratory 21, Heng Mui Keng Terrace Singapore 119613
Email : rmariani@krdl.org.sg, Tel: (+65) 874-8810, Fax: (+65) 774-4990

Abstract

To achieve a face recognition system robust to the

presence of glasses, we have developped a glasses de-

tection and extraction algorithm. Detection is real-

ized using edge information within a small area de-

�ned between the eyes. Extraction is achieved with

a deformable contour, combining edge features such

as strength and orientation and geometrical features

such as convexity, symmetry, smoothness and conti-

nuity. The �nal position of the deformable contour

is obtained using dynamic programming. Experimen-

tal results demonstrate the e�ectiveness of the method,

and the robustness to the variation of glasses' shapes

and colours.

1. Introduction

Robust face recognition system requires recognising
faces correctly under di�erent environment, such as
face scale, lighting, hairstyle and wearing glasses. How-
ever, the presence of glasses a�ects the performances of
face recognition system. In this paper, we propose a
method to detect and to extract the glasses. Detection
is similar to the method proposed in [1] and consists
in detecting the presence of the bridge of the glasses
between the two eyes. Extraction is achieved with a
deformable contour [3], combining edge features such
as strength and orientation and geometrical features
such as convexity, symmetry, smoothness and continu-
ity. The �nal position of the deformable contour is
obtained using dynamic programming [4].

Prior to the glasses detection and extraction, the
eyes are automatically detected and the faces have been
normalized under scale, rotation and translation, �x-
ing the left and the right eyes at �xed position. The
interest area where we research the glasses is de�ned
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according to this normalized image. Then, we consider
a region R1, shown in Figure 1, in which the glasses
are most likely to be located. R1 is further separated
into three regions R2, R3, R4. The two regions that
cover eyeglass frames, R2 and R3 (the two grey regions
including the eyes) are symmetrical by the middle axis
of the image. The region R4 (the grey region between
the eyes) usually contains the bridge connecting the
two glasses parts.

Figure 1. Region of Interest

In the second section, we describe the glasse detec-
tion algorithm, and in the third section, we detail the
glasses extraction algorithm, before to present the re-
sults and to conclude on the perspective of this work.

2. Glasses Detection

There are many kinds of glasses, with di�erent mate-
rials, di�erent colours. Furthermore, sometimes there
is no frame around the eyeglasses. However, as men-
tionned in [1], the nosepiece is one of the most common
features existing on all of the glasses. It is indispens-
able and very obvious in any kind of glasses. Using
this important feature, face photos with glasses can be
detected from facial database.

In [1], the authors introduced six measures in di�er-
ent regions for detecting the presence of glasses. Ex-
periments showed that measure from region R4 alone is
the most powerful criterion for glasses detection. The
nosepiece can be found in the region R4, where the
presence of edges is an important cue. Using a 3x3
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sobel edge detector, we obtain at each point (x; y) the
magnitude and the orientation of the gradient:

G =
q
G2
x +G2

y , � = arctan(Gy=Gx)

whereGx andGy are the horizontal and vertical deriva-
tives obtained at the pixel (x; y). Then, if the num-
ber of pixels having a vertical direction exceeds a �xed
threshold, the presence of glasses is determined.

Figure 2. Glasses detection

3. Glasses Extraction

Glasses extraction is realized in three steps. First,
we produce an edge map using the Canny edge detector
[2] and we �lter it by removing the unnecessary edge
points. Then, according to the distribution of contour
points, we initialize the deformable contour, and �nally
we optimize its shape and position, by combining im-
age features and geometrical constraints, and, for this
speci�c problem, we �nd the optimal solution by dy-
namic programming realizing an exhaustive search over
the di�erent possibilities [4].

3.1. Edge Map

The frame of glasses is not always obvious due to
the approximation between the grey level of frame and
skin in normalised images. So a sensitive detector is
expected. For this, we use the Canny edge detector [2]
as an optimal operator. There will be broken points
in the detected edges, and eyes, nose, and eyebrow will
generate disturbing edges.

We can distinguish edges of glasses from edges of
eyes and nose simply by di�erent geometrical location.
All the edges present in the eyes and nose region are dis-
carded. The edges corresponding to the eyebrows may
have con
icting position with the edges glasses and it
may be di�cult to distinguish them and to eliminate
them. The model-based glasses extraction has to deal
with this ambiguity.

Figure 3. Edge Filtering

3.2. Symmetrical Contour Initialization

The contour of the glasses can be de�ned as an or-
dered set of n points V = [v1; v2; :::; vn], where each
point vi is de�ned on the image grid. As the opti-
mization process is based on dynamic programming,
realizing an exhaustive search of all the possible solu-
tions, the location of the initial contour will a�ect the
speed and the computational complexity of the algo-
rithm. Therefore, we need an algorithm to approach
the pixels of the glasses contour coarsely.

In order to take into account the natural symmetry
of the glasses, and knowing the axis of symmetry of the
frontal face, in this case the middle vertical line of the
image, we initialize symmetrically the two parts of the
contour' glasses, considering only one side, for exam-
ple the left side, and integrating the edge information
present in both sides. In this way, the obtained ini-
tialized contour will be symmetric, and later, we will
allow only transformation of the contour which keeps
the symmetry. The �nal contour will therefore be sym-
metric by construction.

Concretely, let (xl; yl) the coordinate of the left eye
center, and the ith angular sector Si de�ned by [�i; �i+
��] and centered in (xl; yl). We are interested in those
edges points which are de�ned within an acceptable
distance interval from the eye's center [�min; �max]. We
obtain the sample point vi = (ui; vi) associated to this
sector Si as follow

�i = 2�i
��

ui = 1
2N

PN

j=1 xj � (E(xj ; yj) +E(2c� xj ; yj))

vi = 1
2N

PN
j=1 yj � (E(xj ; yj) +E(2c� xj ; yj))

where E(x; y) = 1 if the point (x,y) is an edge
pixel, and 0 otherwise, X = c is the middle
vertical line of the image and used as symmet-
rical axis, and N is the number of edges pix-
els considered (N = j(x; y) 2 Si : E(x; y) = 1j +
j(x; y) 2 Si : E(2c� x; y) = 1j. If no edge pixels are
present within this sector, the initial point is taken as
the middle of the sector. �� �xes the size of one sector
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and we then obtain n = 2�
��

points. This computation
is realized for each sector.

Figure 4. Initial Contour

3.3. Directed Graph Construction

Having the initial contour, we construct the directed
graph G = (H;T ) of hypothesis by considering all the
possible positions of the points and the edges linking
them, and by attributing quality costs to each hypoth-
esis and to the geometrical likelihood of a transition
between two consecutive hypothesis. At the end, we
obtain the optimal solution by computing the shortest
path linking the two extremity of this graph. Here, H
denotes the set of all the hypothesis and T denotes the
set of the transitions between two hypothesis. Again,
the symmetry of the contour is embedded in the model,
and only one real contour is modi�ed, the other one
being obtained by vertical symmetry about the middle
line X = c. To do so, we have incorporated into the hy-
pothesis quality cost, a measure which is a combination
of two image observations.

Let P = fP1; P2; :::; Png the set of possible posi-
tion for each of the n points of the initial contour,
where Pi = fp

�k; p�k�1; :::; p0; :::; pk�1; pkg, and where
p0 = (�0; �0) corresponds to initial ith point and
pm = (m�� + �0; �0) is the initial point placed at the
mth position where k and �� are two �xed values.

From this set of possible positions of points, we de-
rive the set of possible segments, which constitutes the
hypothesis set H , and the set of transitions between
two hypothesis T

H = fstart;H1; H2; :::; Hn; endg , Hi = Pi � P(i+1)%n

T = fTstart; T1; :::; Tn�1; Tendg , Ti = Hi �Hi+1

Tstart = fstartg �H1 , Tend = Hn � fendg

where start and end are two virtual vertices denoting
respectively the �rst and the last node of the graph
G, � is the cartesian product and % is the modulo
operator.

3.4. Cost Function of a Hypothesis

The quality of a hypothesis hi 2 Hi, where hi =
[p; q] and p and q are two possible positions of the points

(d)

ENDSTART

HP

Figure 5. Dynamic programming

of the deformable contour, is de�ned using a similar-
ity between the observed direction of contour and the
expected one, and makes use directly of the symmetry
constraint, by combining the observations on [pq] and
[rs], the symmetric segment of [pq].

The cost function from the edge information is pro-
duced according to the magnitude and the direction of
the gradient. A comparison of the expected gradient
direction with the observed gradient provides this cost.
With �, the direction normal to the segment [pq], and
�(u) the observed gradient at the pixel u, the edge cost
is obtained as follow:

Cost([pq]) = 1�
jfu 2 [pq] : jj�(u)j � j�jj � �gj

k�!pqk

where jX j denotes the cardinal of the ensemble X , u is
a pixel situated on the segment [pq] and � is an angular
tolerance. When the matching is perfect, this cost is
equal to zero and in the worst case it is equal to one.
Then, the hypothesis cost is de�ned as

C(hi) =
1

2
(Cost([pq]) + Cost([rs])

where [rs] is the symmetric segment of [pq] about the
vertical middle lineX = c. This cost is de�ned between
0 and 1.

3.5. Transition Cost between Two Hypotheses

Let hi = [p; q] and hi+1 = [q; r], two consecutive hy-
pothesis, linked at the point q. The cost associated to
the transition ti = (hi; hi+1) is de�ned using a smooth-
ness measure associated to the chain [p; q; r], and which
comes from the fact that the shape of the glass is gen-
erally convex and with a piecewise smooth contour, the
ideal example of glass being the ellipsis. Moreover, a
transition is declared impossible when it creates a non-
convex contour or when it is discontinuous, ie, we do
not consider transitions between a hypothesis [pq] and
[rs] when q 6= r.
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The transition cost is then given by

T (hi; hi+1) =

�
1 if not convex
1
2 (1� cos �); , � =\�!pq;�!qr

where � is the bending angle. Convexity of the chain
[pqr] is established using the center of the eye (xl; yl).

Figure 6. Convexity

3.6. Optimization

Once the elementary costs of hypothesis and tran-
sitions have been established, we normalize the graph
by associating to each transition, a �nal cost G, linear
combination of the elementary transition cost and the
following hypothesis cost, ie

G(hi; hi+1) = �C(hi) + (1� �)T (hi; hi+1)

where � has been �xed experimentally. Then, we com-
pute the shortest path linking the vertex start to the
vertex end, and this path de�nes the �nal and optimal
contour.

4. Results

We have tested our glasses detection algorithm with
a set of facial images. This set contains photos of 419
people, among which 151 people wear glasses and these
images are taken under di�erent imaging conditions.
All the face images are frontal view, however, some of
them are taken with slight face slant and orientation.
The glasses that appeared on the face images have var-
ious shapes and colours, so that the robustness to the
di�erent variations of the method can be evaluated.

The correct detection rate is 99.52%. We obtained
two false alarms in this test, by falsely detecting the
presence of glasses in facial images. 50% glasses are
accurately extracted from the database, 30% of glasses
are extracted with satisfactory results, and the remain-
ing 20% are obtained with fair results. In failed face
images, the gray scale of face skin is very similar to the
grey-scale of glasses; furthermore, eyebrows cross edges
of glasses, creating substantial ambiguities.

Figure 7. Results

5. Conclusion and Future Work

We have proposed a glasses detection and extraction
algorithm based on deformable contours. The opti-
mization of the �nal position of the contour was estab-
lished by dynamic programming, realizing an exhaus-
tive but limited search of the optimal solution, around
an initial contour, which is close to �nal solution. Here,
the main features we used were the symmetry, the con-
vexity and the continuity of the contour image, com-
bined with edge orientation information. Results ob-
tained on facial frontal images are satisfactory, and now
we are investigating the extraction of glasses in the
presence of pose, using a perspective symmetry.
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