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1 Overview

Our goal is to solve a counting problem. Given some number n ∈ N which has a prime
factorization

n = pα1
1 · · · pαr

r ,

we want to determine the number δk(n) of unique, finite ordered tuples of the form

〈m1, . . . ,mk〉

such that m1 · · ·mk = n and ∀i, mi 6= 1. Note that the tuples must be unique, which means
permutations of multiple occurrences of some value mi in the tuple should not contribute
to the overall count. Note that by the structure theorem for abelian groups, this count is
equivalent to the number of distinct finite abelian groups of order n up to isomorphism. We
will investigate a number of approaches for solving this problem.

2 Generating Functions

We will first attempt to find an intuitive interpretation using generating functions for both
squarefree and non-squarefree numbers. We would also like to find a closed form for δk(n)
for non-squarefree numbers n. In order for this approach to work, we need to describe an
equivalent counting problem.

Our analogous counting problem involves the placement of a certain number of distinguishable,
distinct items into a certain collection of labelled bins where order inside the bins does not
matter. One example of this might be the separation of a number composed of single instances
of distinct prime factors; in other words, some c ε N such that c = p0 × p1 × ... × pk and ∀
0 ≤ i, j ≤ k, pi 6= pj . In most cases, a simple combinatorial composition will suffice to solve
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this counting problem. However, there exists a possible additional constraint which can make
this problem more difficult: the necessity to ignore empty bins (or, in our example, bins that
contain the 1 factor) when considering unique arrangements. This would allow us to peruse
the collection in each bin in some order, and completely ignore any empty bins. A unique
arrangement in this case would be a result of such a perusal. In order to count the number
of possible unique arrangements given some number of bins and items we must completely
ignore the bins which are empty to avoid counting certain identical arrangements multiple
times. This is the most difficult aspect of the simplified, squarefree version of our problem.

2.1 Combinatorial Compositions

Let us describe the problem by assuming that there are k labelled bins and n unique items.
We want to define a function for the number of ways we can arrange these n items across
k bins such that order inside the bins does not matter and empty bins are ignored when
comparing any two arrangements.

We will use the standard definition of combinatorial compositions. First, let us show how this
is conceptually related to our problem. In the case of each bin, we can employ an ordinary
generating function for each item.

1
1− x

= 1 + x + x2 + x3 + . . .

Note that each contributes once. Thus, for the number of items n, we should be able to
determine how many ways we can utilize it using ( 1

1−x)n. Note that we need not ensure that
it is used at least once, because we need to ensure that every position is utilized over all the
prime factors, not just a single one. In addition, this requires us to supply another ( 1

1−x)
factor to our product, because we need to account for the fact that 1 factors must be used
where a certain pi factor is not used (or, in other words, that p0

i , instead of pj
i for some j, is

used). This leads us to an ordinary generating function which has a closed form.

( 1
1− x

)n+1

We know from the binomial theorem that the kth coefficient in the above generating function
takes the form

(
n+k−1

k

)
. We know there are k possible distinct positions to utilize, and that

any given number of prime factors that can be utilized is n, which leads to our n+1 exponent
as described above. Thus, our desired count for the set of n items will be

(
n+1+k−1

k

)
=(

n+k
k

)
. Note that this is effectively the multiplicative equivalent of the traditional formula

for combinatorial compositions (the number of compositions of n + 1 into k parts or factors,
which intuitively makes sense in this case, as does the fact that the 1 is added to account for
the multiplicative identity), which likewise utilizes the multiplicative identity 1 in place of the
additive identity 0. This will cause a problem for us shortly. Our notation in this case will be
Ck(n + 1) =

(
n+1+k−1

k

)
.
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First, we define a function δn(k) for the number of ways we can arrange a system using k
positions. We will need to provide a recursive definition for the moment.

Ck(n + 1)

Naturally, because we want to avoid counting examples where not all k positions are utilized,
we will need to subtract from this. We note that the number of ways an arrangement utilizing
k − 1 positions can occur over k positions is exactly k (in other words, the 1 which we want
to avoid can be in one of k possible positions). This leads to our recursive definition.

δn(k) =
(
Ck(n + 1)

)
− kδn(k − 1)

We note that we can write the solution to this relation explicitly:

δn(k) = Ck(n + 1)−
k−1∑
i=0

[
(−1)i

( i∏
j=0

k − j
)
Ck−i−1(n + 1)

]
.

This can be simplified.

δn(k) = Ck(n + 1)−
k−1∑
i=0

( (−1)ik!
(k − i− 1)!

Ck−i−1(n + 1)
)

We note that the above result is cumbersome and difficult to follow, and is of little value
when we are faced with a given problem, though it is sufficient to calculate our answer. We
can analyze our function δn with the help of this equation to find a more suitable method to
solve our problem.

3 Nexus Numbers

Analysis of the patterns in this situation can lead to a more elegant method for counting the
number of unique arrangements.

Note the sequences for a fixed k but a varying value of i for the first few k.

{δi(2) | i ε N, i ≥ 1} = {1, 2, 3, 4, 5, ...}

We can extend this process indefinitely to find the equation for δn(k) for some k ε N.

δn(7) = (7n − 6n)− 5(6n − 5n) + 11(5n − 4n)− 13(4n − 3n) + 9(3n − 2n)− 3(2n − 1n) + 1

δn(6) = (6n − 5n) + 4(5n − 4n)− 7(4n − 3n) + 6(3n − 2n) + 3(2n − 1n)
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δn(5) = (5n − 4n)− 7(4n − 3n) + 6(3n − 2n) + 3(2n − 1n)

δn(4) = (4n − 3n) + 6(3n − 2n) + 3(2n − 1n)

δn(3) = (3n − 2n)− (2n − 1n) + 1

δn(2) = (2n − 1n)

δn(1) = 1

The first thing to note about these equations is that the terms with exponents are, in face,
nexus numbers of the form in − (i− 1)n [Weisstein 2] for i ε N such that 0 < i ≤ k.

Nn−1(i− 1) = (i)n − (i− 1)n

This means every term can be expressed as a polynomial.

Nn−1(i− 1) =
n−1∑
j=0

(
n

j

)
(i− 1)j

Likewise, we see that the coefficients of the terms in each case are actually a set of triangle
numbers. The numbers here have a corresponding formula [Sloane, A108561], which is defined
recursively.

T (n, 0) = 1

T (n, n) = (−1)b
n
2
c

The remaining terms can be obtained using the recursive formula for some n and k such that
0 < k < n.

T (n + 1, k) = T (n, k − 1) + T (n, k)

Luckily, the coefficients for each nexus term also have an explicit formula.

χm(3) =
m∑

i=0

(−1)(m−i)

(
i + 3

3

)

The n = 3 [Sloane, A002623] and n = 4 [Sloane, A001752] cases are available, and are
examples of the more general formulation, which we will call χ : Z → Z, and define as follow:

χm(k) =
m∑

i=0

(−1)(m−i)

(
i + k

k

)
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We will rewrite the above in a form more suited for our purposes, allowing for shorter pa-
rameters. In this form, k represents the enumeration of the nexus number term for which we
need the coefficient, and m represents the number of bins.

χm(k) =
m−1−k∑

i=0

(−1)(m−1−k−i)

(
i + k

k

)

We now see that we can easily write a general form for δn(k) using χ and the nexus numbers.

δn(k) =
k−1∑
j=0

[
(−1)k−j+1 χk(j) Nn−1(j)

]
(1)

We provide the expanded version for clarity.

δn(k) =
k−1∑
j=0

[
(−1)k−j+1

[ n∑
i=0

(−1)(n−i)

(
i + j

j

) ]
×

[ n−1∑
i=0

(
n

j

)
(n− 1)i

]]
(2)

We have now derived an explicit formula for the case where there is only a single set N of n
distinguishable items.

3.1 The General Case

We will now consider a union S of r disjoint sets:

S =
r⋃

i=1

Si ,

Si ∩ Sj = ∅ ∀i, j , 0 < i, j ≤ r, i 6= j .

We can imagine each set Si containing some number of items of a certain type, and the number
of sets r being the number of unique types. We now wish to once again count the number of
ways in which these items can be placed into k labelled bins. To review, order in each bin
does not matter, and empty bins are skipped when considering a unique arrangement.

We utilize a concise representation of the size of each set Si for clarity:

si = |Si|.

We once again remind ourselves that we want to find some δS(k) for a given set S and some
number of labelled bins k.
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3.2 Indistinguishable Items

Let us first consider the case of where r = 1. In this case, we have some set S⊥ such that
s⊥ = |S⊥|. The function δS⊥ is easily derived:

δS⊥(k) =
b (k−1)

2
c∑

j=0

(
s⊥

k − 1− 2j

)
.

We note that this initial form will be the necessary first base case in any calculation of δS(k).

3.3 Form of δS(k)

We now wish to find a general form for δ which utilizes χ and the nexus numbers. This will
require that we rebuild our set of equations δm(k) for various values of k above into recursive
equations. At each step of the recursion, we will factor the new combinations into the equation.
For any set S where for all i, |Si| = 1, the recurrence relation should be equivalent to our
explicit formulation (1).

The recurrence relation for δn(k), can be described as follows:

δ1(k) = 1 , (3)

δn+1(k) =
k−1∑
i=0

δn(k) . (4)

We can now sprinkle the combination factors across this definition to account for the fact that
at each step, we may have a different subset Si ⊂ S. We need a base case for our recurrence:

δS⊥(k) =
b (k−1)

2
c∑

j=0

(
s⊥

k − 1− 2j

)
.

We now form the recurrence using the observation that δ(S
⋃

S′)(k) can be found given some
δS(k) by multiplying the previous iteration of the recurrence by the size of the maximum
term inside a nexus number, which is equivalent to the number of bins. This means we will
have a summation of k terms. We then need to ensure that we remove the new terms which
result from the fact that while k(kn) = kn+1, k((k− c)n) = (k− c)n+1 + ε, where in this case
ε = (c)(k− c)n. Let u(S) denote the number of unique types of items already contained in S:

δ(S
⋃

S′)(k) =
k−1∑
i=0

[(|S′|+ i− 1
i

)[
δS(k)−

i∑
j=0

[
(−1)k+j−1(ju(S))(χk(j) + χk(j − 1))

]]]
.
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We can now find the unique number of arrangements in the problem we described by simply
calculating δS(k) for a specific number of labelled bins k and set S. Note that we have not
shown the equivalence of the first explicit formula for δS(k) to the formula utilizing the nexus
numbers, and that the equivalence of the two expression in the general case remains to be
proven.

4 The Divisor Function

We note that the divisor function σ0, defined by

d(n) = σ0(n) =
∑
d|n

d0 =
∑
d|n

1,

can offer us the most straightforward way to perform the desired count. We first define the
iterated s-fold divisor function as

ds(n) =
∑
ds|n

∑
ds−1|ds−2

. . .
∑
d1|d2︸ ︷︷ ︸

s

1.

Note that the above function yields the number of ordered s-tuples of the form 〈d1, . . . , ds〉
where

1|d1|d2| . . . |ds|n.

We can now set d0 = 1, ds+1 = n, and

s = k − 1,

to obtain 〈d0, d1, . . . , dk〉 where

d0|d1| . . . |dk−1|dk.

Note that we can use one of the above tuples to rewrite the elements of our desired tuples
〈m1, . . . ,mr〉 for 1 ≤ i ≤ k:

mi =
di

di−1
.

There is a problem here, because 1|n and n|n, and we required that ∀i, mi 6= 1. We can
account for this by subtracting 2 at each level of the definition for dk(n) except the last:
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ds(n) =
∑
ds|n

( ∑
ds−1|ds−2

(
. . .

(∑
d1|d2

1
)
− 2 . . .

)
− 2

)
− 2,

which can be rearranged, once again with s = k − 1, as

δk(n) = dk−1(n)− 2
k−2∑
i=1

di(n).

Note that for any k > d(n), it is the case that δk(n) = 0. Thus, we can define δ in general as

δ(n) =
∞∑
i=1

δi(n)

Because we assume we already know the prime factorization of n, this calculation is no more
and no less complex than any of the previous formulas. If the number of factors of n is d(n),
we can bound the complexity of the calculation by the approximation O(d(n)k).
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