CS 591: Data Systems Architectures

Prof. Manos Athanassouli

mathan@bu.edu

http://manos.athanassouli.net/classes/CS591
Today

big data

data-driven world

data systems which are the main drivers?

why do we need new designs?

CS591 goals & logistics

I want you to speak up!
[and you can always interrupt me]
CS591 philosophy

cutting-edge research

question everything (to understand it better!)

interactive & collaborative
Understanding a design/system/algorithm ...

system
• component 1
• component 2
• component 3

algorithm
• step 1
• step 2
• step 3

understanding all steps and all decisions helps us see the big picture and do good research!

(otherwise we make ad hoc choices!)
Ask Questions!

... and answer my questions!

our main goal is to have interesting discussions that will help to gradually understand what the material discusses

(it’s ok if not everything is clear, as long as you have questions!)
Read papers

every class 1 paper to discuss in detail – presented by a student (background papers to provide more details)

read all of them!

write reviews (every class 1 review, you can skip 3 reviews)
Presentations

for every class, **one student will be responsible for presenting** the paper (discussing all main points of a long review – see next slide)

during the presentation **anyone can ask questions** (including me!) and each question is **addressed to all** (including me!)

the presenting student will **prepare slides and questions**
Reviews

5 long reviews and the rest short reviews

short review (up to half page)
Par. 1: what is the problem & why it is important
Par. 2: what is the main idea of the solution

long review (up to one page)
what is the problem & why it is important?
why is it hard & why older approaches are not enough?
what is key idea and why it works?
what is missing and how can we improve this idea?
does the paper supports its claims?
possible next steps of the work presented in the paper?

remember, this will helps us do good research!
systems project

implementation-heavy C/C++ project

group of 1-2

research project

group of 3-4

pick a subject (list will be available)

design & analysis

experimentation
Project theme: NoSQL key-value stores

... are everywhere

work on a state-of-the-art design
Project: open questions

tuning based on workload

quickly delete and free-up resources

exploit *data being sorted*

data *partitioning* for complex workloads

more on the website (soon)
A good project

has a clear plan by mid-way proposal (10% - early March)

evaluation at the end of the semester:
(i) present the key ideas of the implementation/new approach
(ii) present a set of experiments supporting your claims

come to OH!

(more details for the projects in Class 4 next week)
The ultimate reward!

ACM SIGMOD Undergrad Research Competition

The top conference in data management
ACM Special Interest Group in Data Management (SIGMOD)
receives submissions of student research
top 10-15 are invited to present their work at the conference
top-3 projects get an award and invitation to present at the ACM level
(all of computer science)
Class Goal

understand the internals of data systems for data science

tune data systems through adaptation and automation

get acquainted with research in the area
Can I take this class?

background
- programming
- data structures
- algorithms
- comp. architecture

pre-req
- CS460/660 & CS210 or CS350
- contact Manos if not sure

how to be sure?
- if familiar with most, then maybe!
- if familiar with **none**, then no!
Next classes

Class 1-2
logistics, big data, data systems, trends and outlook

Class 3
more basics on data systems, systems classification, graph, cloud

Class 4
intro to class project

Class 5 and beyond
present and discuss research papers
big data?

who doesn’t have a lot of data?

what is new?
data analysis

knowledge
is data analysis new?

what is really new?
Every day, we create 2.5 exabytes* of data — 90% of the data in the world today has been created in the last two years alone.

[Understanding Big Data, IBM]

*exabyte = 10^9 GB
Data Management Skills Needed

<table>
<thead>
<tr>
<th>Entries</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>100s</td>
<td>Pen & paper</td>
</tr>
<tr>
<td>10^3-10^6</td>
<td>Unix tools and Excel</td>
</tr>
<tr>
<td>10^9</td>
<td>Custom solutions, programming</td>
</tr>
<tr>
<td>10^{12+}</td>
<td>Data systems</td>
</tr>
</tbody>
</table>
size (volume)
rate (velocity)
sources (variety)
big data (it’s not only about size)

all of the above plus ...
our ability to collect *machine-generated* data

- scientific experiments
- sensors
- monitoring
- micro-payments
- Internet-of-Things
- cloud
data analysis

know what we are looking for

not sure what we are looking for
data systems are in the middle of this!
what is a data system?
a data system is a large software system (a collection of algorithms and data structures) that stores data, and provides the interface to update and access them efficiently

the end goal is to make data analysis easy
“relational databases are the foundation of western civilization”

Bruce Lindsay, IBM Research
ACM SIGMOD Edgar F. Codd Innovations award 2012
data systems are everywhere

growing need for tailored systems

future
Why?

new applications
new hardware
more data
The big success of 5 decades of research

a declarative interface!

“ask and thou shall receive”

ask *what* you want

data system

system decides *how* to store & access

is this good? why?
“three things are important in the database world: performance, performance, and performance”

Bruce Lindsay, IBM Research
ACM SIGMOD Edgar F. Codd Innovations award 2012
CS591: data systems **kernel** under the looking glass

this is where we will spend our time!

system architecture (row/column/hybrid)

indexing

relational/graph/key-value

scale-up/scale-out

goal: learn to design and implement a db kernel
how to design a data system kernel?

what are its basic components?

 algorithms/data structures/caching policies

what decisions should we make?

 how to combine? how to optimize for hardware?

how many options?
data system design **complexity**

application

performance

budget

thousands of **options**

millions of **decisions**

billions of **combinations**
let’s think together: a simple db kernel

a key-value system, each entry is a \{key,value\} pair

main operations: put, get, scan, range scan, count

workload has both reads (get, scan, range scan) *and writes* (put)

data

how to store and how to access data? how to efficiently delete?
designing a simple key-value system:

what is the key/value?
are they stored together?
can read/write ratio change over time?
what to use? b-tree, hash-table, scans, skip-lists, zonemaps?
how to handle concurrent queries? million concurrent queries?
how to compress data?
how to exploit multi-core, SIMD, GPUs?
what happens if data does not fit in memory?
what happens if data does not fit in a node?
other challenges of a db system

SQL queries

data system

(much) more than 1 user?
ensure complete/correct answers?
protect data breaches and privacy?
robust performance?
what happens when move to the cloud?

- hardware at massive scale
- performance tradeoffs different
 - 10GB app: 1% less memory in your machine
 - 10GB app: 1% less memory in 1M instances
 - so what?
 - 1M*10GB*1%=100TB!
 - ~800k$ in today’s price

what about security?
- elasticity
- privacy
- scalability
db systems history line

- 60s: db systems
- 70s: IBM System R
- 80s: ORACLE DBMS
- 90s: more systems
- 00s: Microsoft SQLServer
- 10s: gradual adoption of new technology
- 20s: "new" db

lots of research
col-store, multi-core, storage
the game of new technologies

db
- large systems
- complex
- lots of tuning
- legacy

noSQL
- simple, clean
- “just enough”

what is *really* new?

newSQL

more *complex* applications

need for *scalability*
CS591 more logistics
topics
storage layouts, solid-state storage, multi-cores, indexing, access path selection, HTAP systems, data skipping, adaptive indexing, time-series, scientific data management, map/reduce, data systems and ML, learned indexes

past but still relevant topics
relational systems, row-stores, query optimization, concurrency control, SQL

how did we end up to today’s systems?
no textbook – only research papers
class key goal

understand **system design tradeoffs**

design and **prototype** a system

with other **side-effects:**

* sharpening your systems skills*
* (C/C++, profiling, debugging, linux tools)*

data system designer & researcher

any business, any startup, any scientific domain
grading

class participation: 5%
reviews: 25% (long 15%, short 10%)
paper presentation: 25%
mid-semester project report: 10%
project: 35%
Piazza

all discussions & announcements
http://piazza.com/bu/spring2019/cs591a1/
also available on class website
no smartphones no laptop

Why?
there is enough evidence that laptops and phones slow you down
Your awesome TA!

Subhadeep, Postdoc

office: MCS 283
Prof. Manos Athanassoulis
name in greek: Μάνος Αθανασούλης
grew up in Greece
enjoys playing basketball and the sea

BSc and MSc @ University of Athens, Greece
PhD @ EPFL, Switzerland
Research Intern @ IBM Research Watson, NY
Postdoc @ Harvard University

some awards:
Best of SIGMOD/VLDB papers
SNSF Postdoc Mobility Fellowship
IBM PhD Fellowship

photo for VISA / conferences

Myrtos, Kefalonia, Greece

http://manos.athanassoulis.net
Office: MCS 279
Office Hours: Tu/Th after class
how can I prepare?

1) Read background research material
 • **Massively Parallel Databases and MapReduce Systems**. By Shivnath Babu and Herodotos Herodotou. Foundations and Trends in Databases, 2013

2) Start going over the papers
class summary

2 classes per week / OH 4 days per week

each student
1 presentation/discussion lead + 2 reviews per week
(5 long and the rest short, can skip 3)

systems or research project + mid-semester report
what to do now?

A) read the syllabus and the website
B) register to piazza
C) register to gradescope
D) register for the presentation (week 2)
E) start submitting paper reviews (week 3)
F) go over the project (end of this week will be available)
G) start working on the mid-semester report (week 3)
survival guide

class website: http://manos.athanassoulis.net/classes/CS591/
piazza website: http://piazza.com/bu/spring2019/cs591a1/
presentation registration: https://tinyurl.com/CASCS591A1-presentations
gradescope entry-code: MR7ZD4
office hours: Manos (Tu/Th, 2-3pm), Subhadeep (M/W 2-3pm)
material: papers available from BU network
Welcome to
CS 591: Data Systems Architectures!

Prof. Manos Athanassoulis
mathan@bu.edu

next time: more detailed logistics and start with data systems design