The TileDB Array Data Storage Manager

Ziyang Chen, Yuansheng Dong
Introduction

- Basic Concepts
- Existing Array Management system
- Introduction of TileDB
- Physical Organization
- Core Functions of TileDB
- Parallel Programming
- Evaluation
- Conclusion
Basic Concepts

- **Dense array**: every array element has a value
 - i.e. an astronomical image

- **Sparse array**: the majority of the array elements are **empty**
 - i.e. geo-locations: points in a 2D coordinate space
Existing Array Management Systems

- HDF5
- SciDB
- Relational Databases
Existing Array Management Systems

● HDF5
 ○ groups array elements into regular hyperrectangles (chunks) which are stored on the disk

○ Shortcomings
Existing Array Management Systems

- Shortcomings
 - Can not efficiently capture sparse arrays
 - represent denser regions of a sparse array as separate dense array
 - large cost to track their changes
 - HDF5 is optimized for in-place writes of large blocks
 - result in poor performance of writing small blocks of elements
Existing Array Management Systems

- PHDF5 limitation:
 - concurrent writes to compressed data
 - variable length element values

operation atomicity requires some coding format from user
Existing Array Management Systems

● SciDB
 ○ array orientation database
 ○ implement own storage managers
 ○ can serve as the storage layer for other scientific applications built on top
Existing Array Management Systems

- Shortcomings
 - not design for sparse array
 - requires reading and updating an entire chunk (even a small portion)
Existing Array Management Systems

- Relational databases (MonetDB or Vertica)
 - used as the storage backend for array management
 - storing non-empty elements as records
 - encoding the element indices as extra table columns
 - poor performance for dense array
Introduction of TileDB

What is TileDB?

- efficient writes and reads to arrays
- for both dense and sparse array
- supporting compression, parallelism and more

KEY IDEA:

It organizes array elements into ordered collections called fragments.
Introduction of TileDB

- Data Model
- Global cell order
- Data tiles
- Compression
- Fragments
- Array metadata
- System architecture
Introduction of TileDB

- Data Model
 - dimensions
 - attributes
 - dense: only int dimensions
 - i.e. image modeled by 2D dense array
 - sparse: int or float dimensions
 - as TileDB materializes the coordinates of the non-empty cells
 - i.e. geo-locations
Introduction of TileDB

Dense array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a</td>
<td>1 bb</td>
<td>4 e</td>
<td>5 ff</td>
</tr>
<tr>
<td>2 ccc</td>
<td>3 dddd</td>
<td>6 ggg</td>
<td>7 hhhh</td>
</tr>
<tr>
<td>8 i</td>
<td>9 jj</td>
<td>12 m</td>
<td>13 nn</td>
</tr>
<tr>
<td>10 kkk</td>
<td>11 llll</td>
<td>14 ooo</td>
<td>15 pppp</td>
</tr>
</tbody>
</table>

Sparse array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a</td>
<td>1 bb</td>
<td></td>
<td>2 ccc</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3 dddd</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 e</td>
<td>6 ggg</td>
<td>7 hhhh</td>
</tr>
<tr>
<td>4</td>
<td>5 ff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tuple of cell (4,4)
\(<a1 \text{ (int32)}, a2 \text{ (var char)}> = <15, pppp>\)

attributes
Introduction of TileDB

Global cell order

Mapping from multiple dimensions to a linear order
Introduction of TileDB

Figure 2: Global cell orders in dense arrays
Introduction of TileDB

3 steps to specified global cell order in dense array:

- Decompose the domain into space tiles
- Determine the cell order within each space tile
 - row-major
 - column-major
- Determine the tile order
Introduction of TileDB

For sparse array:

creating sparse tile is complex

→ many empty tiles
 ◆ tiles of highly varied capacity
 ◆ ineffective compression
 ◆ bookkeeping overheads
 ◆ small tiles wasting seeking time
Introduction of TileDB

Data tile: a group of non-empty cells

For dense array: each data tile has a one-to-one mapping to a space tile

For sparse array

● determine a capacity of each data tile (i.e., $\text{capacity} = c$)
● create one data tile for every c non-empty cells
Figure 3: Data tiles in sparse arrays
Introduction of TileDB

Fragment

a timestamp of snapshot of batch of array update
Figure 4: Fragment examples
Introduction of TileDB

Fragment is a key concept enables TileDB perform rapid writes

- If numerous fragments produces (bad for read performance)
 - Then TileDB consolidates them into a single one
 - Happening in parallel in the background
 - Reads and writes continue processing
Introduction of TileDB

Array metadata

- array schema and fragment bookkeeping
 - definition of array (name, number, name and types of dimensions and attributes, the dimension domain...)
 - the later summarizes information about the physical organization of the stored array data in a fragment
Introduction of TileDB

System architecture

- init
- write
- read
- consolidate
- finalize
Physical Organization

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>bb</td>
<td>e</td>
<td>ff</td>
</tr>
<tr>
<td>2</td>
<td>ccc</td>
<td>dddd</td>
<td>sss</td>
<td>hhhh</td>
</tr>
<tr>
<td>3</td>
<td>i</td>
<td>jj</td>
<td>m</td>
<td>nn</td>
</tr>
<tr>
<td>4</td>
<td>kkk</td>
<td>llll</td>
<td>ooo</td>
<td>pppp</td>
</tr>
</tbody>
</table>

Files (binary format)

- **a1.tdb**: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- **a2.tdb**: 0 1 3 6 10 11 13 16 20 21 23 26 30 31 33 36
- **a2_var.tdb**: a bb ccc dddd e ff ggg hhhh i jj kkk llll m ...

Figure 6: Physical organization of dense fragments
Physical Organization

Figure 7: Physical organization of sparse fragments
Core Functions of TileDB

- Read
 - dense fragment
 - sparse fragment
- Write
 - dense fragment
 - sparse fragment
- Consolidate
Core Functions of TileDB

Read

- read returns the values of any subset of attributes inside a user supplied subarray
- result is sorted on the global cell order
- user specifies the subarray and attributes in the init call
- TileDB load **bookkeeping data** of array fragments into main memory
 - for dense case: negligible
 - for sparse case: depends on the tile capacity
Core Functions of TileDB

Read

issue: for variable length attributes and sparse array, the result size is unpredictable

solution:

➢ If exceeding the size of some buffers, TileDB fills in data into buffers and returns
➢ user can consume the result, and invoking read to resume process
Core Functions of TileDB

Read

Main Challenge:

- the presence of multiple fragments in the array
- read cannot search each fragment individually

TileDB read algorithm (dense and sparse):

- efficiently access all fragments
- skipping unqualified data
Core Functions of TileDB

Read algorithm for dense array:

- first stage: computes a sorted list of tuples of the form $<[sc, ec], fid>$
- second stage: retrieves the actual attribute values from the respective fragment files
Core Functions of TileDB

$<[sc, ec], fid>:\$

$[sc, ec]$: range of cells between start coordinates sc and end coordinates ec

fid: a fragment id, based on timestamp
Core Functions of TileDB

for fist stage:

- all ranges must be disjoint
- the ranges must be sorted in the global cell order
- the ranges in the ordered list must contain all and only the actual, up-to-date result cells
- the cells covered in each range must appear contiguously on the disk
Core Functions of TileDB

- creates on tuple \([sc, ec], fid\), and insets them into a priority queue \(pq\)
- the comparator of \(pq\) gives precedence to the tuple with smallest value
- breaking ties: the tuple with largest \(fid\)
- pops a tuple at a time from \(pq\) (called popped)
- compares popped to the new top tuple
- emitting new result tuples for second stage to consuming and reinserting tuples into \(pq\)
Core Functions of TileDB

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>popped to result</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>popped to result, re-insert to pq</td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>check against new top, discard, re-insert to pq</td>
<td></td>
</tr>
<tr>
<td>(iv)</td>
<td>re-insert to pq as dense, re-insert to pq as sparse</td>
<td></td>
</tr>
</tbody>
</table>
Core Functions of TileDB

Read algorithm for sparse fragment

2 differences:

- iteration does not focus on space tile, but focus on ranges
 - start before minimum
 - end bounding coordinate of a data file
- case iii never arises, since the sparse array consist only of sparse fragment
Core Functions of TileDB

Write:

- writes session write cells sequentially in batches, creating a separate fragment
- begins when an array is initialized in write mode (with init)
- terminates when the array is finalized (with finalize)
Core Functions of TileDB

Write algorithm for dense fragment:

- Upon initialization, user specifies the subarray region in which the dense fragment is constrained
- then user populates one buffer/array attribute
- storing the cell value in global cell order
Core Functions of TileDB

write function:

- simply appends the values from buffers into the corresponding attribute files
- writing them sequentially
- without requiring additional internal buffering
Core Functions of TileDB

Write algorithm for sparse fragment

3 differences with dense case:

- provide value only for non-empty cells
- user includes an extra buffer with the coordinates of the non-empty cells
- TileDB maintains some extra write state info for each created data tile
 - counts number of cells
 - stores minimum bounding rectangle and bounding coordinate of data tile
Core Functions of TileDB

random updates arrive at the system:

TileDB enable users to provide unsorted cell buffers to write

- sort the buffer internally
- then proceed for the sorted case

main difference:

Each write call in this mode creates a separate fragment
Core Functions of TileDB

Consolidate:

● takes a set of fragment as input and produces a single new output fragment
● simply repeated perform a read on entire domain
● providing buffers depends on the available main memory
● after every read, write command has been invoked
● stop reading when the buffers are full
Core Functions of TileDB

in read fragments:

any of them are **dense**: the consolidated fragment is dense

all of them are **sparse**: the consolidated fragment is sparse
Core Functions of TileDB

suggestion:
Consolidation should be applied on fragments of approximately equal size
Parallel Programming

- Concurrent Reads
- Concurrent Writes
 - multiple process
 - multiple threads
- Concurrent Read and Write
Parallel Programming

- Concurrent Read and Write
 - fragments not-visible to reads finalized → visible

- Locks -- Consolidation
 - old fragments deleted
 - new become visible

Reads Shared Lock → Exclusive lock
Experiments

3 Competitors

HDF5 SciDB Vertica

v1.10.0 v15.12 v7.02.0201

RLE
Experiments

Dense--synthetic 2D arrays

\[\text{int32 } i \times \text{#col} + j \]

Sparse--AIS database
Experiments

Dense Arrays
HDF5 SciDB
Experiments

Load

One CPU Core

(a) vs. dataset size (HDD)

(b) vs. # instances (SSD)
Experiments

Update

(a) vs. # updates (HDD) (b) vs. # instances (SSD)
Experiments
Experiments

Figure 11: Subarray performance for dense arrays
Experiments

(a) Subarray time (HDD) (b) Consolidation time (HDD)

Figure 12: Effect of # fragments in dense arrays
Experiments

Scalability

two large arrays with sizes 128 GB and 256 GB

1,815.78 s and 3,630.89 s

Subarray queries 80 ms and 84 ms, 75 ms

unaffected by the array size

the memory consumption upon loading negligible.
Experiments

Vertica

GZIP and RLE

TileDB 2x-40x better in all settings
Experiments

Sparse Arrays

Vertica+Z SciDB
Experiments

Figure 13: Load performance of sparse arrays
Experiments

(a) DQ vs. result size (HDD) (b) SQ vs # result size (HDD)
Experiments

(c) DQ vs. # instances (SSD) (d) SQ vs. # instances (SSD)
Experiments

Consolidation random new cells
deteriorates 18% after inserting 100 fragments,
 2x after 1000 fragments,
 normal after consolidation

#Same as original Load
Conclusion

HDF5-- Better performance

SciDB-- Better in all settings

Vertica-- Equivalent performance on sparse arrays

More friendly API
Key Factors

Arrays → dense and sparse

Space tiles → shape and size

Tile capacity → number of cells

Dimensions → no subselection

Filtering (Compression)
Thanks for watching