A Review of Data Canopy

Keith Daniel Lovett
Data Exploration

• Statistics:
 • Reveal trends in data.
 • Act as building blocks for machine learning formulas. (Which can help reveal more nuanced trends we may not otherwise notice.)

• We want a means of exploring data using statistics that is both fast and flexible.
What’s Flexible? What’s Fast?

FLEXIBLE (lots of functionality for statistics, no data management) - Numpy, Modeltools

FAST (limited statistical functionality, good data management) – Database Systems

Database Connectors: Psycopg, MonettDB.R, SciDB-Py
Can we make a system for data exploration which...

FLEXIBLE (lots of functionality for statistics, no data management) - Numpy Modeltools

FAST (limited statistical functionality, good data management) – Database Systems

Maintains the flexibility offered by software libraries

Database Connectors: Psycopg, MonettDB.R, SciDB-Py

Offers speeds faster than those found when using database connectors
What’s the hold-up?

...Data reusability!
How do we Define Query “Similarity”

- Queries target sub-ranges of other queries
- Queries' ranges partially overlap with other queries
- Queries ask for different statistics on the same range
- Queries show a mixture of the aforementioned repetitions

Compute, decompose, and store

Query 1: Touch base data and store aggregates in Data Canopy

\[t^a = \left\{ \sum_{i=0}^{11} t_{i+12k} \right\}_{k \in \{0,1,\ldots,728\}} \]

\[r_1 = \left\{ \frac{1}{24} (t_{k+12} + t_{k+1}) | k \in \{0, 1, 2, \ldots, 728\} \right\} \]

Query 2: Reuse across ranges

\[t^s = \left\{ \sum_{i=0}^{11} t_{i+12k}^2 \right\}_{k \in \{0, 1, \ldots, 728\}} \]

\[r_2 = \left\{ \frac{1}{108} \sum_{i=0}^{11} t_{i+12k}^2 | k \in \{0, 1, \ldots, 51\} \right\} \]

Query 3: Reuse across statistics

\[t^b = \left\{ \sum_{i=0}^{11} t_{i+12k} \right\}_{k \in \{0, 1, \ldots, 728\}} \]

\[r_3 = \left\{ \left(\frac{1}{108} \sum_{i=0}^{11} t_{i+12k}^2 \right)^{5/6} \right\}_{k \in \{0, 1, \ldots, 25\}} \]

Sub-range

Sub-range, different statistic
Great!

- We’ve identified our problem (data-reusability) and defined the types of ways in which data is potentially reusable...
- ... But how do we reuse it?
The Solution? Aggregates!

- We can form a smart cache (a “Data Canopy”) of basic aggregates of data! We can think about these aggregates in two ways:
 - Those immediately needed
 - Those not yet needed, but which can be formed from those which were immediately needed.
- Example:
 - Query 1: Request for mean temps for each day.
 - Query 2: Request for mean temps for each week. (different granularity from first query.)
 - Query 3: Request for variances in temps for every two weeks.

\[v_x = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2 \right) - \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right)^2 \]
A More f(ormal) Definition...

- How should we think about basic aggregates? What if we define them as a function?

\[S(X) = F(\{f(\tau(\{x_i\}))\}) \]

Great! One important point...

\[f(X) = f(\{f(X_1), f(X_2) \ldots f(X_n)\}) \]
But is this Flexible Enough?

• Accounts for 90%+ of stats supported by Numpy and SciPy, 75%+ of stats supported by Wolfram.
How Often Does an Aggregate Form?

• 1 Chunk (of data)... For each chunk, one value exists FOR EACH basic aggregate type.

• If the granularity of a query (i.e. daily, weekly) doesn’t match the granularity of a chunk, we scan at most the two surrounding chunks at the edges of the query range.
How are the Values Stored?

Segment Trees!
How Often Does a Segment Tree Form?

Per Column, Per Statistic

Matches structure of queries

Matches structure of aggregates
Major Benefit...

• Easily Parallelizable!
• Univariate: Divide columns between available threads.
• Multivariate: Independently build different segment trees for each combination of columns.
Operation Modes

• Offline
 • Data Canopy built in advance, library of basic aggregates available to start.

• Online
 • Data Canopy populated incrementally during query processing.

• Speculative
 • For a modest CPU/memory overhead to I/O tradeoff, incrementally construct more segment trees than those which are immediately needed.
Query Processing

• Map query range to set of chunks
 • If range fits chunks, synthesize result from basic aggregates
 • If residual range, compute basic aggregates for range

• Map a statistic to a set of basic aggregates

\[
\{\{C\}, [R_s, R_e], S\} \rightarrow \{\{C\}, [c_s, c_e], R_d; \{f(\{\tau\})\}, F\}
\]

• Evaluate plan…
 • Offline Mode? No need to touch base data except to evaluate residual range.
 • Online/Speculative Mode? Form chunks associated with any residual range.
Query Cost

How do these costs compare?

$C_{\text{syn}} = C_{\text{st}} + C_r$

$C_{\text{syn}} = \frac{2 \cdot k \cdot s}{\#} + \left(2 \cdot b \cdot \log_2 \frac{r \cdot v_d}{s} \right)$

$C_{\text{scan}} = \frac{R \cdot v_d}{\#}$

R is the range of data. R_b is the point at which $C_{\text{scan}} = C_{\text{syn}}$

$R_b = \frac{2 \cdot k \cdot s}{v_d} + \frac{2 \cdot \# \cdot b \cdot \log_2 \left(\frac{r \cdot v_d}{s} \right)}{v_d}$

So when $R > R_b$ use the synthesized aggregates for optimal speed.
Selecting Chunk Size

- Dependent On...
 Hardware, type of requested statistic.

\[s_0 = \frac{b \cdot \#}{k \cdot \ln 2} \]
Selecting Optimal Tree Search Depth

• This is based on the optimal size of a data chunk. When looking for answer to query, traverses segment tree to depth d_q. If answer not found, skips to scan data instead.

\[d_q = \log_2 \left(\frac{r \cdot v_d}{s_q} \right) \]
What about Memory Size?

- Dependent on:
 - Types of statistical measures contained
 - Chunk size
 - Data size

- This raises a more interesting question...

$$|DC(S)| = c \cdot v_{st} \cdot (2 \cdot \frac{r \cdot v_d}{s} - 1) \cdot \mathcal{F}(S)$$
How / When do we Evict?

• Phase 1: Round-Robin removal of one layer of leaf nodes from every segment tree.
• Phase 2: Caches frequent data.
• Phase 3: Pushes whole segment tree to disk, keeps bitvector that marks any dirty chunks if the tree is later reloaded from disk.
Updating the Data Canopy

- To insert rows: When the capacity of the Data Canopy is reached, double the capacity of the segment trees by creating a new root.
- To insert columns: Simply add to types of trees Data Canopy can form.
- Updating Rows: Update old aggregate
- Deleting Rows: Decrement a counter on the chunk. Maintain invalidity segment tree.
Experimental Analysis

The longer the exploration path, the greater the benefit. Notice, as we increase in data repetition, we see improvements in performance. Perhaps the drop in c and d is due to generation of the Data Canopy, or switching of some of its policies.
Experimental Analysis

Online and Offline Performance of DC

Speeding up ML Performance

Linear Increase to Execution Time
Experimental Analysis

Linear Increase to Execution Time

Rebound after Phase 2

Reduces memory footprint according to pressure. (Phase 1/Phase 2)
Thoughts

• A really well formulated paper, on a topic that is conceptually easy to grasp, but goes into a lot of depth.

• Could have expanded more on / tied together machine learning paradigms and examples of how they were constructed via Data Canopy aggregates.

• Would have liked to have known more concretely about when a phase is switched from one to the next in order to handle memory pressure.