Exercise 15.2 Consider a relation with this schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index on <age, sal>. Each Employees record is 100 bytes long, and you can assume that each index data entry is 20 bytes long. The Employees relation contains 10,000 pages.

1. Consider each of the following selection conditions and, assuming that the reduction factor (RF) for each term that matches an index is 0.1, compute the cost of the most selective access path for retrieving all Employees tuples that satisfy the condition:
 - (a) sal > 100
 - (b) age = 25
 - (c) age > 20
 - (d) eid = 1, 000
 - (e) sal > 200 ∧ age > 30
 - (f) sal > 200 ∧ age = 20
 - (g) sal > 200 ∧ title = ‘CFO’
 - (h) sal > 200 ∧ age > 30 ∧ title = ‘CFO’

2. Suppose that, for each of the preceding selection conditions, you want to retrieve the average salary of qualifying tuples. For each selection condition, describe the least expensive evaluation method and state its cost.

3. Suppose that, for each of the preceding selection conditions, you want to compute the average salary for each age group. For each selection condition, describe the least expensive evaluation method and state its cost.

4. Suppose that, for each of the preceding selection conditions, you want to compute the average age for each sal level (i.e., group by sal). For each selection condition, describe the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:
 - (a) sal > 200 ∨ age = 20
 - (b) sal > 200 ∨ title = ‘CFO’
 - (c) title = ‘CFO’ ∧ ename = ‘Jo’

Exercise 15.3 For each of the following SQL queries, for each relation involved, list the attributes that must be examined to compute the answer. All queries refer to the following relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did
2. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did
3. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5
4. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY D.did
5. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor HAVING COUNT(*) > 2
6. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor
Exercise 15.4 You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

1. Consider the following query:

```
SELECT E.title, E.ename FROM Executives E WHERE E.title='CFO'
```

Assume that only 10% of Executives tuples meet the selection condition.
(a) Suppose that a clustered B+ tree index on title is (the only index) available. What is the cost of the best plan? (In this and subsequent questions, be sure to describe the plan you have in mind.)
(b) Suppose that an unclustered B+ tree index on title is (the only index) available. What is the cost of the best plan?
(c) Suppose that a clustered B+ tree index on ename is (the only index) available. What is the cost of the best plan?
(d) Suppose that a clustered B+ tree index on address is (the only index) available. What is the cost of the best plan?
(e) Suppose that a clustered B+ tree index on <ename, title> is (the only index) available. What is the cost of the best plan?

2. Suppose that the query is as follows:

```
SELECT E.ename FROM Executives E WHERE E.title='CFO' AND E.dname='Toy'
```

Assume that only 10% of Executives tuples meet the condition E.title = ‘CFO’, only 10% meet E.dname = ‘Toy’, and that only 5% meet both conditions.
(a) Suppose that a clustered B+ tree index on title is (the only index) available. What is the cost of the best plan?
(b) Suppose that a clustered B+ tree index on dname is (the only index) available. What is the cost of the best plan?
(c) Suppose that a clustered B+ tree index on <title, dname> is (the only index) available. What is the cost of the best plan?
(d) Suppose that a clustered B+ tree index on <title, ename> is (the only index) available. What is the cost of the best plan?
(e) Suppose that a clustered B+ tree index on <dname, title, ename> is (the only index) available. What is the cost of the best plan?
(f) Suppose that a clustered B+ tree index on <ename, title, dname> is (the only index) available. What is the cost of the best plan?

3. Suppose that the query is as follows:

```
SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title
```

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What is the cost of the best plan?
(b) Suppose that an unclustered B+ tree index on title is (the only index) available. What is the cost of the best plan?
(c) Suppose that a clustered B+ tree index on ename is (the only index) available. What is the cost of the best plan?
(d) Suppose that a clustered B+ tree index on <ename, title> is (the only index) available. What is the cost of the best plan?
(e) Suppose that a clustered B+ tree index on <title, ename> is (the only index) available. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E WHERE E.dname > 'W%' GROUP BY E.title

Assume that only 10% of Executives tuples meet the selection condition.
(a) Suppose that a clustered B+ tree index on title is (the only index) available. What is the cost of the best plan? If an additional index (on any search key you want) is available, would it help produce a better plan?
(b) Suppose that an unclustered B+ tree index on title is (the only index) available. What is the cost of the best plan?
(c) Suppose that a clustered B+ tree index on dname is (the only index) available. What is the cost of the best plan? If an additional index (on any search key you want) is available, would it help to produce a better plan?
(d) Suppose that a clustered B+ tree index on <dname, title> is (the only index) available. What is the cost of the best plan?
(e) Suppose that a clustered B+ tree index on <title, dname> is (the only index) available. What is the cost of the best plan?