Comp 115: Databases

Functional Dependencies

Instructor: Manos Athanassoulis

http://www.cs.tufts.edu/comp/115/
Reminder

Project 0

due on Friday 17th

HW1 will come out next week
Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)

Logical Design
translate ER into DBMS data model

Schema Refinement
consistency, normalization

Physical Design
indexes, disk layout
Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)

Logical Design
translate ER into DBMS data model

Schema Refinement
consistency, normalization

Physical Design
indexes, disk layout
Why schema refinement

what is a bad schema?

a schema with redundancy!

why?

redundant storage & insert/update/delete anomalies

how to fix it?

normalize the schema by decomposing normal forms: BCNF, 3NF, ... [next time]
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>Kurt</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

primary key? (SSN,Telephone)

problems of the schema?
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>Kurt</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

Problems

Storage
Update
Insert
Delete
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>Kurt</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

Problems

Storage: store *Salary* multiple times

Update: change John’s salary?

Insert: how to store someone with *no phone*?

Delete: how to delete Kurt’s phone?
Solution: Decomposition

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>Kurt</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

Can decomposition cause problems?

How to find good decompositions?
FUNCTIONAL DEPENDENCIES
Functional Dependencies

Definition
Functional Dependencies (FDs) : form of constraint “generalized keys”

let X,Y nonempty sets of attributes of relation R
let t_1, t_2 tuples : $t_1.X = t_2.X$, then $t_1.Y = t_2.Y$

“$X \rightarrow Y$” : ”X (functionally) determines Y”

an FD comes from the application (not the data)
an FD cannot be inferred (only validated)
Functional Dependencies

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>Kurt</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

which attribute determines which?

- **SSN** \rightarrow **Telephone**
- **SSN** \rightarrow **Name, Salary**
- **SSN, Salary** \rightarrow **Name**
FD: Example 3

<table>
<thead>
<tr>
<th>studentID</th>
<th>classID</th>
<th>Semester</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>15</td>
<td>2</td>
<td>Mark</td>
</tr>
<tr>
<td>0043</td>
<td>15</td>
<td>1</td>
<td>John</td>
</tr>
<tr>
<td>4322</td>
<td>115</td>
<td>6</td>
<td>Manos</td>
</tr>
<tr>
<td>9876</td>
<td>175</td>
<td>4</td>
<td>Remco</td>
</tr>
<tr>
<td>1211</td>
<td>177</td>
<td>4</td>
<td>Megan</td>
</tr>
</tbody>
</table>

which attribute determines which?

classID, Semester \rightarrow Instructor

studentID \rightarrow Semester

studentID, classID \rightarrow Semester
Reasoning about FDs

an FD holds for all allowable relations (legal) identified based on semantics of application

given an instance r of R and an FD f:
(1) we can check whether r violates f
(2) we cannot determine if f holds

“K → all attributes of R” then K is a superkey for R (does not require K to be minimal)
remember: in order to be a candidate key minimality is required

FDs are a generalization of keys
Reasoning about FDs (Splitting)

assume A, B \rightarrow C, D

C, D are *independently determined* by A,B so, we can split: A, B \rightarrow C and A, B \rightarrow D

it does *not* work vice versa we *cannot* infer: A \rightarrow C, D or B \rightarrow C, D
Trivial FDs

for every relation

A → A
A, B, C → A

these are not informative!

in general an FD $X \rightarrow A$ is called *trivial* if $A \subseteq X$
it always holds!
Identifying FDs

FD comes from the application (domain) property of app semantics (not of instance) cannot infer from an instance

given a set of tuples (instance r), we can:
(1) confirm that an FD might be valid
(2) infer that an FD is definitely invalid
but we cannot prove that an FD is valid
FD: Example 3

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
<td>phones</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
<td>stationary</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
<td>phones</td>
</tr>
</tbody>
</table>

name → department

name, category → department

we do not know!
Why use FDs?

the capture (and generalize) key constraints

offer more integrity constraints

help us detect redundancies
tell us how to normalize

it is the principled way to solve the redundancy problem
More on: Reasoning for FD

when a set of FD holds over a relation

more FD can be inferred

Armstrong’s Axioms
Axiom 1: Reflexivity

for every subset $X \subseteq \{A_1, ..., A_n\}$

$$A_1, ..., A_n \rightarrow X$$

Examples

$A, B \rightarrow B$

$A, B, C \rightarrow B, C$

$A, B, C \rightarrow A, B, C$
Axiom 2: Augmentation

for any attribute sets X, Y, Z
if $X \rightarrow Y$, then $X, Z \rightarrow Y, Z$

Examples

$A \rightarrow B$ then $A, C \rightarrow B, C$
$A, B \rightarrow C$ then $A, B, C \rightarrow C$
(here $X=A,B$ and $Y=Z=C$)
Axiom 3: Transitivity

for any attribute sets X, Y, Z
if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Examples

$A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$

$A \rightarrow B, C$ and $B, C \rightarrow D$ then $A \rightarrow D$
Union and Decomposition

rules that follow from AA

Union
if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow Y, Z$

Decomposition
If $X \rightarrow Y, Z$ then $X \rightarrow Y$ and $X \rightarrow Z$
Applying AA

Product

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
</table>

we know:

(1) name \rightarrow color
(2) category \rightarrow department
(3) color, category \rightarrow price

can we infer: name, category \rightarrow price

(i) augmentation to (1):
(4) name, category \rightarrow color, category
(ii) transitivity to (4), (3)
name, category \rightarrow price
Applying AA

Product

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
</table>

we know:
(1) name \rightarrow color
(2) category \rightarrow department
(3) color, category \rightarrow price

can we infer: name, category \rightarrow color

(i) by reflexivity:
 (5) name, category \rightarrow name
(ii) transitivity to (5), (1)
 name, category \rightarrow color
FD Closure

how can we find all FD?

FD Closure
if F is a set of FD, the closure F^+ is the set of all FDs logically implied by F

Using Armstrong Axioms we can find F^+

sound: any generated FD belongs to F^+

complete: repeated application of AA generates F^+
Attribute Closure

X an attribute set, the closure X^+ is the set of all attributes B:

$X \rightarrow B$

in other words B

attribute closure of X is the set of all attributes that “are determined by $X”$
Applying AA

Product

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
</table>

we know:
(1) name → color
(2) category → department
(3) color, category → price

Attribute closure: ?
(i) Closure of name
 \{name\}^+ = \{name, color\}
(i) Closure of name, category
 \{name, category\}^+ = \{name, color, category, department, price\}
Calculating Closure

let $X = \{A_1, \ldots, A_n\}$

closure $= X$

UNTIL closure does not change REPEAT:

IF $B_1, \ldots, B_m \rightarrow C$ AND B_1, \ldots, B_m are all in closure

THEN add C to closure
Calculating Closure

Example: \(R(A,B,C,D,E,F) \)
- \(A, B \rightarrow C \)
- \(A, D \rightarrow E \)
- \(B \rightarrow D \)
- \(A, F \rightarrow B \)

\(\{A,B\}^+ \) ?
\(\{A,F\}^+ \) ?
Calculating Closure

Example: \(R(A,B,C,D,E,F) \)

\[
\begin{align*}
A, B & \rightarrow C \\
A, D & \rightarrow E \\
B & \rightarrow D \\
A, F & \rightarrow B
\end{align*}
\]

\(\{A,B\} \) \{A,B,C\} \{A,B,C,D\} \{A,B,C,D,E\}

\{A,B\}^+ \{A,F\}^+ ?
Calculating Closure

Example: $R(\{A,B,C,D,E,F\})$

\[
\begin{align*}
\{A,B\} & \rightarrow \{A,B,C\} \\
\{A,B,C\} & \rightarrow \{A,B,C,D\} \\
\{A,B,C,D\} & \rightarrow \{A,B,C,D,E\} \\
\{A,F\} & \rightarrow \{A,F,B\} \\
\{A,F,B\} & \rightarrow \{A,F,B,C\} \\
\{A,F,B,C\} & \rightarrow \{A,F,B,C,D\} \\
\{A,F,B,C,D\} & \rightarrow \{A,F,B,C,D,E\}
\end{align*}
\]
Calculating Closure

Example: $R(A,B,C,D,E,F)$

- $A, B \rightarrow C$
- $A, D \rightarrow E$
- $B \rightarrow D$
- $A, F \rightarrow B$

$\{A,B\}^+ = \{A,B,C,D,E\}$
$\{A,F\}^+ = \{A,F,B,C,D,E\}$
Why calculate closure?

for “does $X \rightarrow Y$ hold” questions
check if $Y \subseteq X^+$

to compute the closure F^+ of FDs
(i) for each subset of attributes X, compute X^+
(ii) for each subset of attributes $Y \subseteq X^+$, output the FD $X \rightarrow Y$
FD and Keys

in terms of relational model

superkey: a set of attributes such that:
no two distinct tuples can have same values in all key fields

in terms of FD

superkey: a set of attributes $A_1, A_2, ..., A_n$ such that for *any* attribute B: $A_1, A_2, ..., A_n \rightarrow B$

key (or candidate key): requires minimality

what if we have multiple candidate keys?
- we specify one to be the **primary key**
Computing (Super)Keys

(1) compute X^+ for all sets of attributes X

(2) if $X^+ =$ all attributes, then X is a superkey
 why?
 - because then "X determines `all attributes`"

(3) if, also, no subset of X is superkey
 then X is also a key
Example

Product

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
</tr>
</thead>
</table>

we know:
(1) name \rightarrow color
(2) color, category \rightarrow price

Superkeys:
{name, category}, {name, category, price},
{name, category, color}, {name, category, price, color}

Keys:
{name, category}
Can we have more than 1 key?

what about the relation $R (A,B,C)$ with:
A, B → C
A, C → B

which are the keys?
{A, B} and {A, C} are both minimal
Should we use all FDs?

given a set of FDs F we have discussed about F^+

the useful info is in the minimal cover of F

"the smallest subset of FDs S: $S^+ = F^+$"

Formally: minimal cover S for a set of FDs F:

(1) $S^+ = F^+$

(2) RHS of each FD in S is a single attribute

(3) if we remove any FD from S or remove any attribute from its LHS the closure is not F^+
Example of Minimal Cover

\[R(\{C, S, J, D, P, Q, V\}) \]

key C \((C^+ = \{C, S, J, D, P, Q, V\})\)

\(J, P \rightarrow C\)

\(S, D \rightarrow P\)

\(J \rightarrow S\)

Minimal cover:

\[C \rightarrow J, \ C \rightarrow D, \ C \rightarrow Q, \ C \rightarrow V \]

\(J, P \rightarrow C\)

\(S, D \rightarrow P\)

\(J \rightarrow S\)

This is useful to decide how to solve the problem of redundancy (decomposition)!

More on that next time!!
Summary

FDs and (Super)Keys

Reasoning with FDs:
(1) given a set of FDs, infer all implied FDs
(2) given a set of attributes X, infer all attributes that are functionally determined by X

Next we will look at how to use them to detect that a table is “bad”