Comp 115: Databases

Decomposition & Schema Normalization

Instructor: Manos Athanassoulis

http://www.cs.tufts.edu/comp/115/
Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)

Logical Design
translate ER into DBMS data model

Schema Refinement
consistency, normalization

Physical Design
indexes, disk layout
Why schema refinement

what is a bad schema?
\textit{a schema with redundancy!}

why?
redundant storage & insert/update/delete anomalies

how to fix it?
\textit{normalize} the schema by decomposing normal forms: BCNF, 3NF, ...
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN → Name, Salary
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN → Name, Salary

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>
Motivating Example 2

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
<td>phones</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
<td>stationary</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
<td>phones</td>
</tr>
</tbody>
</table>

name, category → price, color

category → department
Motivating Example 2

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
<td>phones</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
<td>stationary</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
<td>phones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>category</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>laptop</td>
<td>computers</td>
</tr>
<tr>
<td>networking</td>
<td>computers</td>
</tr>
<tr>
<td>cables</td>
<td>stationary</td>
</tr>
<tr>
<td>smartphone</td>
<td>phones</td>
</tr>
</tbody>
</table>
“chopping the relation into pieces using FDs”

DECOMPOSITION
Decomposition

Formally
we decompose $R(A_1, ..., A_n)$ by creating:

$R_1(B_1, ..., B_m)$

$R_2(C_1, ..., C_k)$

where $\{B_1, ..., B_m\} \cup \{C_1, ..., C_k\} = \{A_1, ..., A_n\}$

the instance of R_1 is the projection of R onto $B_1, ..., B_m$

the instance of R_2 is the projection of R onto $C_1, ..., C_k$
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>
“Good” Decomposition

(1) minimize redundancy

(2) avoid information loss (lossless-join)

(3) preserve FDs (dependency preserving)

(4) ensure good query performance
Information Loss

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
</tr>
</tbody>
</table>

Decompose into:

- $R_1(\text{SSN, Name, Salary})$
- $R_2(\text{Name, Telephone})$

Can we reconstruct R?
The decomposition is lossless-join if for any initial instance R, $R = R'$.

Graph:*

- $R(A, B, C)$
- $R_1(A, B)$
- $R_2(B, C)$
- $R'(A, B, C)$

Decompose

Recover (join on B)
Lossless Criterion

given a relation $R(A)$ and a set F of FDs and a decomposition of R into $R_1(A_1)$ and $R_2(A_2)$

the decomposition is \textit{lossless-join if and only if} at least one of the FDs is in F^+ (closure of F):

(1) $A_1 \cap A_2 \rightarrow A_1$

(2) $A_1 \cap A_2 \rightarrow A_2$
Example

Relation $R(A, B, C, D)$
FD $A \rightarrow B, C$

lossy

decomposition into $R_1(A, B, C)$ and $R_2(D)$

$A_1 \cap A_2$ empty set

lossless-join

decomposition into $R_1(A, B, C)$ and $R_2(A, D)$

$A_1 \cap A_2 = A$ and $A_1 = A, B, C$

$A \rightarrow A, B, C$ is in F^+
Dependency Preserving

given R and a set of FDs F, we decompose R into R_1 and R_2. Suppose:

R_1 has a set of FDs F_1

R_2 has a set of FDs F_2

F_1 and F_2 are computed from F

it is dependency preserving if by enforcing F_1 over R_1 and F_2 over R_2, we can enforce F over R
(Good) Example

Person (SSN, name, age, canDrink)

SSN \rightarrow name, age

age \rightarrow canDrink

what is a **dependency preserving** decomposition?

R_1(SSN, name, age) and R_2(age, canDrink)

SSN \rightarrow name, age

age \rightarrow canDrink

Is it also lossless-join?

Yes! $A_1 \cap A_2 = \text{age}$ and $A_2 = \text{age, canDrink}$

age \rightarrow age, canDrink *is in* F^+
(Bad) Example

\[R \ (A, \ B, \ C) \]
\[A \rightarrow B \]
\[B, \ C \rightarrow A \]

not dependency preserving

\(R_1(A, \ B) \) and \(R_2(A, \ C) \)
\[A \rightarrow B \]

no FDs!

the table violates
\[B, \ C \rightarrow A \]
Normal Forms

How “good” is a schema design?
follows normal forms

1NF
2NF
3NF
BCNF
4NF
...

flat tables
atomic values

more restrictive
Normal Forms

How “good” is a schema design?
follows normal forms

1NF
2NF
3NF
BCNF
4NF
...

more restrictive

flat tables
atomic values
Boyce-Codd Normal Form (BCNF)

given a relation $R(A_1,\ldots,A_n)$, a set of FDs F, and $X \subseteq \{A_1,\ldots,A_n\}$

R is in BCNF if $\forall X \rightarrow A$ one of the two holds:

- $A \in X$ (that is, it is a trivial FD)
- X is a superkey

[alternatively, \forall non-trivial FD $X \rightarrow A$, X is a superkey in R]
BCNF - Example

Table

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN → Name, Salary

key: {SSN, Telephone}

FD is not trivial!

so, is SSN a superkey?

no! it is not in BCNF
BCNF - Example 2

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
</tr>
</tbody>
</table>

SSN → Name, Salary
key: \{SSN\}

FD is not trivial!
so, is SSN a superkey?
yes! it is in **BCNF**
BCNF - Example 3

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

key: {SSN, Telephone} the relation is in **BCNF**

why?
no FDs

Is it possible a binary relation to **not** be in **BCNF**?
Binary Relations always BCNF

\[R \ (A,B) \]
excluding all trivial FDs, there are three cases:

(1) \(R \) has no FD

(2) \(R \) has one FD, either \(A \rightarrow B \) or \(B \rightarrow A \), or,

(3) \(R \) has two FDs, \(A \rightarrow B \) and \(B \rightarrow A \)

(1) trivially in BCNF
(2) in either LHS is the key (hence, superkey)
(3) both, A and B candidate keys
BCNF Decomposition

Find a FD that violates BCNF:

\[A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \]

Decompose \(R \) to \(R_1 \) and \(R_2 \)

\[
R_1(A_1, \ldots, A_n, B_1, \ldots, B_m)
\]

\[
R_2(A_1, \ldots, A_n, \text{all other attributes})
\]

continue until no BCNF violations are left
(in new tables as well)
Our favorite example!

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

\[SSN \rightarrow Name, \; Salary \; violates \; BCNF \]

\[A_1 = SSN, \; B_1 = Name, \; B_2 = Salary \]

Split in two relations:

\[R_1(\text{SSN, Name, Salary}) \]
\[R_2(\text{SSN, Telephone}) \]
Our favorite example!

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>
removes [certain types of] redundancy

is lossless-join

is not always dependency preserving
BCNF – Lossless Join

Example

\(R \ (A, B, C) \) and FD: \(A \rightarrow B \)

superkey(s) of the relation?

\(\{A, C\}^+, \{A, B, C\}^+ = \{A, B, C\} \)

\(A \rightarrow B \) violates BCNF (A is not a superkey)

so, the BCNF decomposition is:

\(R_1(A, B) \) and \(R_2(A, C) \)

we can reconstruct it!
BCNF – not dependency preserving

Example

\(R (A, B, C) \), FDs: \(A \rightarrow B \) and \(B, C \rightarrow A \)

superkey(s) of the relation?

\{A, C\}^+, \{B, C\}^+, \{A, B, C\}^+ = \{A, B, C\}

\(B, C \rightarrow A \) is ok, but \(A \rightarrow B \) violates BCNF

so, the BCNF decomposition is:

\(R_1 (A, B) \) and \(R_2 (A, C) \)

\(A \rightarrow B \) is preserved in \(R_1 \)

\(B, C \rightarrow A \) is not preserved!
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

author \rightarrow *gender*

booktitle \rightarrow *genre, price*

candidate key(s)?

\{author, booktitle\} is the only one

Is it in BCNF?

No, because LHS of both FD are not a superkey!
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

- author \rightarrow gender
- booktitle \rightarrow genre, price

Splitting using: **author** \rightarrow **gender**

AuthorInfo (author, gender)

FD **author** \rightarrow **gender** (in BCNF!)

Book2 (author, booktitle, genre, price)

FD **booktitle** \rightarrow genre, price

Is booktitle a superkey? No! {booktitle, author} is.

So not in BCNF!
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)
author → gender
booktitle → genre, price

AuthorInfo (author, gender)

Further splitting with booktitle → genre, price

Book2 (author, booktitle, genre, price)

BookAuthor (booktitle, author) binary is in BCNF!

BookInfo (booktitle, genre, price) in BCNF!

FD booktitle → genre, price

is booktitle a superkey? Yes!
what if not dependency preserving?

in some cases BCNF decomposition is not dependency preserving

how to address this?

relax the normalization requirements
Third Normal Form (3NF)

given a relation $R (A_1,...,A_n)$,
a set of FDs F, and $X \subseteq \{A_1,...,A_n\}$
R is in 3NF if $\forall X \rightarrow A$ one of the three holds:

- $A \in X$ (that is, it is a trivial FD)
- X is a superkey
- A is part of some key for R

is a relation in 3NF also in BCNF?

No, but a relation in BCNF is always in 3NF!
Third Normal Form (3NF)

Example
R (A, B, C), FDs C → A and A, B → C
is in 3NF but not in BCNF. Why?

superkeys?
{A, B}, {B, C}, and {A, B, C}

candidate keys?
{A, B} and {B, C}

Compromise: aim for BCNF but settle for 3NF lossless-join & dependency preserving possible
3NF Algorithm

(1) apply BCNF until all relations are in 3NF

(2) compute a minimal cover F' of F

(3) for each non-preserved FD $X \rightarrow A$ in F', add a new relation $R (X, A)$
3NF algorithm example

Assume \(R \) (A, B, C, D)

\[
\begin{align*}
A &\rightarrow D \\
A, B &\rightarrow C \\
A, D &\rightarrow C \\
B &\rightarrow C \\
D &\rightarrow A, B
\end{align*}
\]

\(A \rightarrow D \) \quad \text{superkeys?} \quad \{A\} \ \{D\} \ \{A, B\} \ \{A, D\}, \ldots

\(B \rightarrow C \) \quad \text{not} \ \{B\}

Step 1: find a BCNF decomposition

\(R_1 \) (B, C)

\(R_2 \) (A, B, D)
3NF algorithm example

Assume \(R \) (A, B, C, D)

\[
\begin{align*}
A & \rightarrow D \\
A, B & \rightarrow C \\
A, D & \rightarrow C \\
B & \rightarrow C \\
D & \rightarrow A, B
\end{align*}
\]

Step 2: find a minimal cover

\[
\begin{align*}
A & \rightarrow D \\
B & \rightarrow C \\
D & \rightarrow A \\
D & \rightarrow B
\end{align*}
\]
3NF algorithm example

Assume R (A, B, C, D)

- $A \rightarrow D$
- $A, B \rightarrow C$
- $A, D \rightarrow C$
- $B \rightarrow C$
- $D \rightarrow A, B$

Step 3: add a new relation for not preserved FDs

- $A \rightarrow D$
- $B \rightarrow C$
- $D \rightarrow A$
- $D \rightarrow B$

R_1 (B, C)

R_2 (A, B, D)

all FD are preserved!

both are in BCNF!
Is Normalization Always Good?

Example 1: suppose A and B are always used together, but normalization says they should be in different tables (e.g., hours_worked and hourly_rate)

decomposition might produce unacceptable performance loss

Example 2: data warehouses
huge historical DBs, rarely updated after creation
joins expensive or impractical
[we want “flat” tables, a.k.a, denormalized]
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 1:
R₁ (S, D, P)
R₂ (C, S, J, D, Q, V)

superkeys?

{C}, {J, P}, {D, J}, ...

not {S, D}
Example

R (C, S, J, D, P, Q, V) superkeys?
C → S, J, D, P, Q, V \{C\}, \{J, P\}, \{D, J\}, ...
J, P → C \text{not} \ \{S, D\}
S, D → P superkeys of R_2 (C, S, J, D, Q, V)?
J → S \{C\}, ... \text{not} \ \{J\}

Step 1b:
R_1 (S, D, P)
R_2, (J, S)
R_3 (C, J, D, Q, V)
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 2: Minimal Cover
 C → J, C → D, C → Q, C → V
 J, P → C
S, D → P
J → S

R₁ (S, D, P)
R₂ (J, S)
R₃ (C, J, D, Q, V)
R₄ (J, P, C)

are they all preserved?

No!

Step 3: need to add R₄ (J, P, C)
Example

\[R (C, S, J, D, P, Q, V) \]
\[C \rightarrow S, J, D, P, Q, V \]
\[J, P \rightarrow C \]
\[S, D \rightarrow P \]
\[J \rightarrow S \]

Step 2: Minimal Cover

\[C \rightarrow J, C \rightarrow D, C \rightarrow Q, C \rightarrow V \]
\[J, P \rightarrow C \]
\[S, D \rightarrow P \]
\[J \rightarrow S \]

\[R_1 (S, D, P) \]
\[R_2' (J, S) \]
\[R_3 (C, J, D, Q, V) \]
\[R_4 (J, P, C) \]

are they all preserved?

No!

Step 3: need to add \(R_4 (J, P, C) \)

did we just introduce redundancy?
Lesson!

theory of normalization is a guide cannot always give a “perfect” solution

redundancy alternatives
query performance
Summary

fix bad schemas (redundancy) by decomposition

 lossless-join

 dependency preserving

Desired normal forms

BCNF: only superkey FDs

3NF: superkey FDs + dependencies to prime attributes in RHS

Next: execution of queries

 procedural & declarative