
Beyond the Wall: Near-Data Processing for Databases

Sam (Likun) Xi Oreoluwa Babarinsa Manos Athanassoulis Stratos Idreos
Harvard University

{samxi, obabarinsa, manos, stratos}@seas.harvard.edu

ABSTRACT
The continuous growth of main memory size allows mod-
ern data systems to process entire large scale datasets in
memory. The increase in memory capacity, however, is not
matched by proportional decrease in memory latency, caus-
ing a mismatch for in-memory processing. As a result, data
movement through the memory hierarchy is now one of the
main performance bottlenecks for main memory data sys-
tems. Database systems researchers have proposed several
innovative solutions to minimize data movement and to make
data access patterns hardware-aware. Nevertheless, all rele-
vant rows and columns for a given query have to be moved
through the memory hierarchy; hence, movement of large
data sets is on the critical path.

In this paper, we present JAFAR, a Near-Data Processing
(NDP) accelerator for pushing selects down to memory in
modern column-stores. JAFAR implements the select oper-
ator and allows only qualifying data to travel up the memory
hierarchy. Through a detailed simulation of JAFAR hard-
ware we show that it has the potential to provide 9⇥ im-
provement for selects in column-stores. In addition, we dis-
cuss both hardware and software challenges for using NDP
in database systems as well as opportunities for further NDP
accelerators to boost additional relational operators.

1. INTRODUCTION
The Development of In-Memory Data Systems. In
recent years, the rapidly diminishing cost of main mem-
ory per gigabyte has led to the development of in-memory
data systems, significantly increasing throughput and per-
formance compared to disk-based systems. However, while
disk accesses are no longer the performance bottleneck for
in-memory data systems, the cost of moving data from main
memory across the memory buses and into CPU caches is
still significant [4]. Big data applications like data analyt-
ics and transactional processing tend to be more memory-
bound than CPU-bound. This trend, called the “memory

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

DaMoN’15, June 1, 2015, Melbourne, Victoria, Australia.

Copyright 2015 ACM 978-1-4503-3638-3/15/06...$15.00

http://dx.doi.org/10.1145/2771937.2771945

wall” [56], is expected only to become worse as CPU per-
formance improvement continues to surpass memory perfor-
mance improvement.

Database systems research has already been driven by“mem-
ory wall” since several decades ago [49]. In the late 1990s
it led to the development of drastically alternative physi-
cal layouts and engines [3, 7] and as of early 2000s there
was a massive transformation of modern systems to column-
store designs that are highly tuned for modern hardware
[1]. Furthermore, the database research community con-
tinues to focus on hardware-aware designs, i.e., algorithms
that are cache-aware and fully utilize multi-cores, such as
work on optimizing joins [5], B+-trees [44], transactions on
NUMA cores [40] and hardware optimized adaptive index-
ing [38, 39]. Past work, however, does not directly try to
reduce data movement from memory to the CPUs. Instead,
it focuses on utilizing existing hardware as best as possible;
relevant data will still be pushed up the memory hierarchy,
causing a significant cost as we move to bigger data sizes.

Near-Data Processing. Reducing data movement of even
qualifying data can be achieved by moving the computa-
tion closer to the data itself, an approach known as near-
data processing (NDP)1. NDP refers to creating specialized
hardware located close to the data (i.e., on disk or mem-
ory), supporting a small set of computational capabilities, an
idea already proposed in various forms decades ago [27, 51].
Nevertheless, NDP hardware has not yet seen widespread
adoption in commercial products because, when it was orig-
inally proposed, Moore’s Law and Dennard scaling enabled
tremendous, continuous gains in CPU performance. Due to
diminishing returns from technology scaling, however, there
has been a recent resurgence in NDP research [4].

Historically, proposals for NDP systems have focused on gen-
eral purpose computation [14, 20, 32, 37]. In recent years,
however, there have been e↵orts in studying the performance
and power improvement opportunities provided by special-
ized near data processing hardware accelerators that are de-
signed for a limited set of functions and therefore can discard
many sources of overhead associated with general purpose
processing [12, 18, 30, 42].

NDP in Modern Database Systems. In this paper,
we study the potential of near-data processing hardware ac-

1Past work has also used the terms “processing in memory”
or “logic in memory”. Here, we use the NDP terminology.

celerators for modern data systems and the associated side-
e↵ects for data system design. With an increasing number of
database applications keeping all or hot data exclusively in
large main memories, the memory wall becomes the primary
bottleneck. Several database operators, such as selection,
projection, and aggregation, produce strictly less than or
the same amount of output as input, making them amenable
to optimization of data movement. Executing these opera-
tors directly in memory and only transporting the necessary
data (i.e., qualifying tuples, qualifying columns, or aggre-
gates) through the memory subsystem leaves the CPU free
to perform other tasks, reduces cache pollution, and alle-
viates memory bus pressure. On the other hand, NDP for
operators that may produce larger results than their input,
like joins, cannot always guarantee performance improve-
ment. In this paper, we focus on studying the potential
benefits and design space of NDP for select operators.

Select operators have improved significantly in recent years
by using techniques such as working over compressed data,
vectorization, and multicores, however, these only help if
the system is not memory bound. On the contrary, designing
NDP solutions for select operators allows us to avoid moving
data completely.

It is also interesting to observe that the ability of NDP to
reduce the total amount of data pushed to the CPU through
the memory hierarchy is similar to the benefits achieved by
columnar storage. However, columnar storage still requires
entire relevant columns to be propagated through the mem-
ory hierarchy, whereas NDP selects can further filter the
data by pushing up only the relevant tuples of the relevant
columns.

Our Contribution. This paper makes the following con-
tributions.

1. We present JAFAR, short for “Just a Filtering Ac-
celerator on Relations”, an accelerator embedded in a
DRAM module that implements the select operator of
a modern column-store (Section 2).

2. We show that JAFAR can provide up to 9⇥ speedup
for the select operator, demonstrating significant po-
tential for NDP in database systems (Section 3).

3. We present a roadmap of research challenges and op-
portunities towards fully utilizing NDP in modern data
systems (Section 4).

2. DESIGN OF JAFAR
In this section, we present the design and implementation
of JAFAR. We first provide the necessary background by
giving an overview of how DDR3 SDRAM operates.

2.1 Overview of DDR3 SDRAM
Figure 1(a) depicts a simplified diagram of a single DDR3
(dual-data rate) SDRAM (synchronous DRAM) chip on a
DIMM (dual in-line memory module). A DIMM is com-
posed of one or two ranks, which are collections of separately
packaged SDRAM chips. Each chip is comprised of multi-
ple independently addressable banks, where each bank is a

collection of arrays. Data is interleaved across each array so
that a memory request is serviced in parallel across all the
arrays while keeping wire lengths short2. To access data, the
memory controller decodes the physical memory address into
row address strobe (RAS) and column address strobe (CAS)
signals, which are then sent to DRAM. The RAS activates
a row across all arrays of a bank by loading the stored bits
into a row bu↵er, and the CAS selects one column of data
from each array. Row activation requires precharging of the
bitlines and sense amplification, so consecutive accesses to
an active row are much faster than consecutive accesses to
di↵erent rows.

In general, DRAM access latency is governed by four timing
parameters: (1) CL: CAS latency, which is the minimum
delay between successive CAS signals; (2) tRCD: row-to-
column delay, which is the minimum delay between a RAS
signal and the first CAS signal; (3) tRP: row precharge time,
which is the time needed to close the current active row
and precharge bitlines for the next row; (4) tRAS: active
to precharge delay, which sets a minimum amount of time
between accesses to two di↵erent rows.

DRAM array speed is limited by how quickly bitlines can be
precharged, how quickly DRAM bitcells can discharge, and
how quickly the sense amplifiers can operate. This total
latency is on the order of tens of nanoseconds. In order to
keep up with increasing CPU clock speeds and demand for
data, the DRAM module is divided into two primary clock
domains. The internal storage arrays are clocked around
100-200 MHz, while the externally-facing circuitry runs at a
much faster clock.

DDR3 is an 8n-prefetch design, which means that a read
request for a 64-bit data word can return up to 512 bits (8⇥
what was requested), starting from the requested address.
This design exploits spatial and temporal locality of typi-
cal memory access patterns and reduces the number of CAS
signals that need to be sent. DRAM accesses are slow by
nature, but the prefetching design amortizes this cost across
many bits, greatly increasing the available memory band-
width. The 512 bits are loaded into an internal IO bu↵er
and then streamed out to the data bus 64 bits at a time
on both the rising and falling edges of the clock (hence the
term “dual data rate”) over four data bus clock cycles. This
means that the data bus clock domain must be four times
faster than the internal array clock in order to be ready for
the next 512 bits.

2.2 Architecture of JAFAR
We now proceed to describe the design of JAFAR, which al-
lows a data system to process the select operator of a modern
column-store directly in memory.

Overall Operation. The architecture of JAFAR is shown
in Figure 1(b). When a select operator is pushed to JAFAR
by the database system, it starts filtering data directly in
memory. Our current design supports the following pred-
icates: =, <, >, , and � and works over integer data,
but the design is easily extensible for supporting other data

2There exist alternative DRAM architectures; here, we
present a common design for SDRAM.

Array 0

RAS

CAS

Sense Amps

64b

CPU
memory
request

JAFAR
memory
request

To host

Memory
Access
Arbiter

IO buffer

JAFAR

512b

(a) Integration of JAFAR with DDR3 SDRAM.

Opcode

From IO buffer

Data latch

Left Right

Opcode
ALU ALU

Comparison is true?

Output buffer bitsetPage offset counter

page offset bitmask
write enable

CLKGEN

(b) JAFAR architecture.

Figure 1: JAFAR operates at the DRAM module level and receives input from the DRAM IO bu↵er. The leftmost figure
shows how JAFAR obtains data and sends control signals (for simplicity, we show one bank out of one chip on the module).

types and operations (discussed in Section 4). At a high
level, JAFAR requests data from DRAM in the same way
that a CPU would, but the filtered data is not pushed back
up the memory hierarchy until it is requested by the CPU
after the operation completes.

JAFAR issues read requests and receives data directly from
the IO bu↵er of the DRAM module as shown in Figure 1(a).
For each 64 bit word received, an integer comparison is per-
formed against the value of the tuple element corresponding
to the query predicate. For range filters, two arithmetic logic
units (ALUs) operate in parallel as shown in Figure 1(b).
Integers are su�cient to capture most datatypes in modern
data systems, but select accelerators like JAFAR can be ex-
tended to natively support floating-point and variable length
datatypes as well. While executing the comparison, JAFAR
tracks the current row o↵set in the page. If the result of
the filter is true, then the o↵set is converted into a bitmask
and written into an output bu↵er, which is a bitset indicat-
ing which rows passed the filter. The output bu↵er holds
n bits to represent the state of n filter operations. Every n

cycles, the output bu↵er is fully filled and its contents are
written back to DRAM at a pre-programmed location. The
CPU controls the operation of JAFAR via memory-mapped
accelerator control registers and is currently notified of JA-
FAR operation completion by polling a shared memory loca-
tion (CPU utilization in a complete system can be improved
by using hardware interrupts). To fit column-stores with a
late materialization execution engine, JAFAR is designed to
consume one complete column at a time.

Because the IO bu↵er operates on a dual-pumped clock, JA-
FAR receives two 64-bit data words per data bus clock cy-
cle, one on each of the rising and falling edge. Rather than
building ALUs and latches for a dual-pumped clock, JA-
FAR generates its own clock that is twice as fast as the data
bus clock, thereby reducing hardware complexity. Looking
at future opportunities, it is interesting to consider that
current DDR3 SDRAM devices typically have CAS laten-

int errno = select_jafar(

void* col_data ,

int range_low ,

int range_high ,

uint8_t* out_buf ,

size_t num_input_rows ,

size_t* num_output_rows);

Figure 2: JAFAR’s API.

cies of around 13ns [34]; in contrast, JAFAR operates at
around 2GHz, or twice the data bus clock frequency (which
is around 1GHz on DDR3). Each DRAM access retrieves
up to eight 64-bit words, and JAFAR can process one per
clock cycle (0.5ns) for a total of 4ns. As a result, JAFAR
currently spends a total of 9 out of 13 nanoseconds waiting
for data to arrive, which implies that there are opportuni-
ties to include more complex calculations, like hashing or
aggregates, at virtually no additional latency.

Programming JAFAR. We envision that JAFAR would
be invoked using the API described in Figure 2. In the pro-
posed API, col_data is a pointer to the start of a virtual
memory page containing the column data and range_low

and range_high define the inclusive bounds of the range fil-
ter. The output bitset is returned as a byte array in out_buf.
The API is designed so that this function must be called for
every page in the column, since JAFAR must rely on the
CPU to provide memory translation services.

Handling Data Interleaving. Systems that have more
than one DIMM installed must decide how the address space
should be organized across them. The system can either
choose to completely fill up one DIMM before moving on to
the next, or it can interleave data across multiple DIMMs.
Data interleaving is only possible if the DIMMs are sym-
metric (i.e. same capacity and latencies) and the memory
controller supports multi-channel memory.

JAFAR can handle either case. The former case is straight-
forward because memory pages are contiguous, and so it
does not require any change to JAFAR. The latter case has
two solutions. Because interleaving is at the 64-bit gran-
ularity and JAFAR operates on 64-bit words, JAFAR can
still perform its filtering operations as usual, but when it
writes the output bitset back to main memory, it must only
overwrite bits corresponding to rows it has operated on. Al-
ternatively, the database storage engine can explicitly shu✏e
column data so that the physical layout is contiguous; this
is an approach that has been taken by existing work [12].

Coordinating DRAM Access. Accesses to DRAM must
obey a strict set of timing rules, so they must be carefully
coordinated between the host CPU and JAFAR to prevent
collisions and interference. Access to DRAM will be arbi-
trated by the query execution manager. If JAFAR has ex-
clusive access to a DRAM rank that stores all the required
input data and output bu↵ers, its performance is extremely
predictable; therefore, the query manager can grant “owner-
ship” of a DRAM rank to JAFAR for a specified number of
cycles, knowing that JAFAR will finish its allotted work in
that amount of time.

The concept of DRAM rank ownership has been used in past
work [12]. Here we discuss a possible way of passing owner-
ship by appropriately setting DRAM mode registers. Mode
registers are typically used to configure timing parameters,
burst length, and other such parameters, but we believe that
we can repurpose mode register 3 (MR3) for our use case.
MR3 activates the multipurpose register (MPR), and when
the MPR is enabled, the memory controller is only permit-
ted to send read/write commands to the MPR, not to the
DRAM chips. This e↵ectively blocks the memory controller
from issuing any ordinary reads and writes. Mode registers
can be set via user-level code at runtime. This opens up
many interesting questions about how to schedule DRAM
ownership transfers in order to minimize the impact on the
rest of the system. Verifying the viability of this design is
ongoing work; more research on this problem will help de-
liver significant performance benefits with NDP.

Physical Implementation. JAFAR is designed as an ex-
ternal integrated circuit mounted on a DIMM. This means
that JAFAR does not need to be fabricated using a DRAM
logic process, which is well known to be unsuited for general
purpose digital logic. It also means that JAFAR cannot af-
fect the density or yields of DRAM chips, as the economics
of the DRAM industry are extremely sensitive to these fac-
tors. This implementation strategy is similar to that used
for fully-bu↵ered memory, which implement the advanced
memory bu↵er as an external chip [25].

3. EXPERIMENTAL RESULTS
In this section, we demonstrate that JAFAR has the poten-
tial to bring significant improvements, achieving up to 9⇥
speedup over CPU-only execution. We first describe imple-
mentation details and experimental setup.

3.1 Experimental Setup
We simulate JAFAR using Aladdin [48], an accelerator mod-
eling tool, and the surrounding system with gem5 [6].

gem5 simulator Intel Xeon E7-4820 v2
One out-of-order CPU Eight 2-way SMT cores

1GHz CPU 2GHz CPU
1 socket 4 socket server (32 phys. cores)

64kB L1, 128kB L2 256kB L1, 2MB L2, 16MB L3
2GB DRAM 1TB DDR3 SDRAM

Table 1: Specifications of our evaluation platforms. gem5 is
used to model the performance of JAFAR in a single proces-
sor system in order to isolate the performance characteristics
of JAFAR, while the Intel Xeon system is used to profile real
database workloads.

Aladdin is an accelerator power and performance modeling
tool that converts a C-style representation of the workload
being accelerated into a dynamic data dependence graph
which represents the structure and execution of the acceler-
ator datapath itself. The dependence graph captures com-
pute operations (e.g., add, subtract, compare), memory op-
erations, and conditional statements, and Aladdin performs
a variety of graph optimizations such as loop unrolling and
pipelining. The resulting graph is then “executed cycle-
by-cycle” by a breadth-first traversal that also takes into
account constraints like memory bandwidth and available
functional units.

The gem5 simulator is a widely used cycle-accurate CPU
full system simulator. We integrated Aladdin into gem5’s
DRAM timing model, supported by gem5’s out-of-order x86
core model. The integration enables the CPU to invoke JA-
FAR via system calls, and while JAFAR is executing, the
CPU is free to do other work or wait until JAFAR is fin-
ished. In this analysis, our benchmarks do the latter as they
focus on the NDP select operators, but in a full blown sys-
tem, the CPU can perform other operations in parallel for
the same or concurrent queries. The full specifications of
the simulated system is given in the leftmost column of Ta-
ble 1. This system was designed to be fairly simple in order
to isolate the raw performance improvement possible with
JAFAR.

To integrate JAFAR with a database system, we use an in-
house prototype column-store that is capable of performing
select-project-join queries using bulk processing and can in-
voke JAFAR to push down selections to the accelerator. To
focus on the potential for improvement by pushing selects
to the accelerator, we focus here on a query workload that
consists of simple single column select queries, varying se-
lectivity from 0% to 100%.

We experiment with 4 million rows in which all values are
randomly generated integers uniformly distributed between
0 and 1 million. The columns are not sorted or indexed, so a
complete scan of all rows is required. Although this dataset
is admittedly very small for a database systems analysis, it
is nonetheless an accurate sampling of the system’s perfor-
mance on a larger dataset because the workload is extremely
regular with essentially no control flow. Sampling-based
simulation is standard practice when using tools like CPU
simulators because simulating the billions and trillions of
instructions required for a dataset of billions of rows is pro-
hibitively expensive. Furthermore, we find that 93% of the

0 10 20 30 40 50 60 70 80 90 100

Selectivity (%)

0

2

4

6

8

10
S

pe
ed

up

Figure 3: Simulated selection speedup obtained by JAFAR
for a dataset of uniformly distributed random integers.

total execution time is spent inside the accelerated region,
so we are approaching the maximum attainable speedup for
the single select operator under the current design. Four
million rows is also larger than the total cache capacity of
the simulated CPU, ensuring that the entire input set can-
not fit into cache. Nevertheless, building the infrastructure
to evaluate JAFAR over much bigger data sets which can
illuminate further insights is currently in progress.

3.2 Speedup on Filtering Operations
We first evaluate the potential speedup on filtering opera-
tions of JAFAR over traditional CPU execution as a function
of both the dataset size and the query selectivity. In Figure
3 we show the achieved speedup of JAFAR over CPU-only
execution on the y-axis, while varying the selectivity on the
x-axis. JAFAR provides significant speedup over CPU-only
execution. The speedup gradually increases from 5⇥ for 0%
selectivity to 9⇥ for 100% selectivity. In this experiment,
there is no memory contention when JAFAR is running be-
cause the CPU is spin-waiting until it finishes.

The increased speedup with higher selectivity is attributed
to a key di↵erence between how JAFAR operates compared
to a traditional CPU-based execution. CPU executes addi-
tional code to record when a row passes the filter. On the
other hand, JAFAR always writes the contents of the out-
put bu↵er back to main memory each time the bu↵er is full,
without delaying the filtering operation. Hence, JAFAR has
constant execution time irrespective of the query selectivity.
Combining this with the additional instructions the CPU
needs to execute to record results, leads in a linear increase
in speedup for higher selectivity. In addition, it is worth not-
ing that here we do not use predication for the software that
run the selects in the CPU. Thus, JAFAR would materialize
even bigger benefits for lower selectivity against a database
system that uses predication for robustness, because while
predication leads to more stable and better performance on
average, for lower selectivity it has adverse impact. Essen-
tially, JAFAR implements predication at the hardware level
at zero cost.

3.3 Quantifying Memory Contention
JAFAR provides considerable speedup on filtering opera-
tions, increasing both with data size and query selectivity.

Figure 4: Memory controller idle time estimates for several
TPC-H queries. Cycles refer to the memory bus clock.

However, so far we did not consider memory contention ef-
fects, which are important because whenever JAFAR is run-
ning on a DRAM rank, the system cannot access that part of
memory, and vice versa. Contention for memory has impor-
tant implications for both JAFAR and system performance,
so access to memory must be appropriately arbitrated by
a scheduler. Exploring the large range of memory access
schedulers is beyond the scope of this preliminary work.
However, as a first step, it is interesting to examine JAFAR’s
potential performance when faced with memory contention
in the absence of a scheduler.

Without a scheduling system, JAFAR can only run while
the memory controller is idle or it would cause unexpected
delays in CPU memory requests. To quantify the length of
memory controller idle periods on a modern data system,
we run several filter-heavy TPC-H queries on MonetDB [21]
(version 11.19.7) on a high-end Intel Xeon server (described
in detail in Table 1) and profile the system by sampling
performance counters in the integrated memory controllers.

Calculating the distribution of idle period length with sam-
ples from performance counters is extremely di�cult. The
available performance counters provide the number of cycles
the read queue of the memory controller is busy (RCbusy),
and the number of cycles the write queue is busy (WCbusy),
however, we are interested in the number of cycles the mem-
ory controller is idle, that is, both queues are simultane-
ously empty (MCempty). We calculate the lower bound of
MCempty, during an experiment total cycles long, by as-
suming zero overlap between the cycles that read or write
requests are served: MCempty = total cycles � RCbusy �
WCbusy. Then, we estimate the mean idle period as the
ratio between MCempty and the total number of reads and

writes: mean idle period =
MCempty

#reads+#writes . This is a pes-
simistic estimate, so we can expect the actual mean idle
period to be higher.

Figure 4 shows on the y-axis the memory controller idle pe-
riod in cycles, when several TPC-H queries are executed
using MonetDB. Specifically, we show the idle period for
Queries 1, 3, 6, 18, and 22, as well as the average idle time.
The memory controller idle period ranges between 200 and
800 memory bus clock cycles, with an average of 500 cycles.
DDR3’s 8n-prefetch design means each memory request oc-

cupies at least four bus cycles (ignoring tCL, RAS/CAS,
row activation, and precharging); this means that at most,
JAFAR can process 500/4 = 125 32-byte data blocks, or a
total of 4KB of data, per idle period.

To put this in context, there are commercial DDR3 chips
whose banks store 8KB of data per row [34]; JAFAR would
on average process half of a DRAM-activated row before an
interruption. Interruptions are costly because if the address
requested does not hit in the current active row, then that
row must be flushed, the DRAM bitlines precharged, and
a fresh row read from the arrays, incurring significant ad-
ditional latency. Ideally, JAFAR could process at least an
entire DRAM row uninterrupted.

This analysis shows that properly coordinating the on-chip
memory controllers with any NDP units available is key
to achieving good performance, which motivates additional
work in memory access scheduling. Past work has shown
that reordering DRAM reads and writes can provide large
increases in memory bandwidth and overall system perfor-
mance [35, 36, 45]. In this context, JAFAR is simply an
additional agent of memory requests, but one that is highly
sensitive to intervening requests. This discussion hints at
interesting optimization problems for query plan scheduling
that opens up suitable memory controller idle periods for
accelerators like JAFAR to utilize.

4. OPPORTUNITIES AND CHALLENGES
JAFAR showcases that NDP for data systems has significant
potential, however there are both more opportunities and
challenges when designing near-data processing accelerators
for data systems. Below, we discuss both new opportunities
and challenges of employing NDP in data systems.

Aggregations. Aggregations such as sum, average, min-
imum, maximum, etc. require minimal additional hard-
ware to support. For hash-based aggregations, common
hash functions like SHA and MD5 can be provided a priori
as fixed function hardware units, while custom hash func-
tions could potentially be supported via reconfigurable logic.
There is a large body of existing work on hardware accel-
erated SHA and MD5 [9, 10, 47], and reconfigurable logic
has been extensively studied as well [15, 16, 19]. Due to
hardware restrictions, there must be a limit to the number
of hash buckets JAFAR can support, which suggests that a
hierarchical aggregation approach will be required.

Projections. Project (or tuple reconstructions) operators
are necessary in column-stores to fetch the qualifying val-
ues from one column based on a selection and a position
list of another column. Projections are essential in column-
store plans as every query plan has at least N � 1 project
operators where N is the number of columns referenced in
the query. Thus, creating NDP accelerators for projections
or accelerators that combine filtering with projections may
result in significant benefits.

Joins. A join operator may produce more tuples than its in-
put and, thus, near-data processing may hurt performance.
This raises challenging optimization problems regarding how
to choose where to run a join and how to split computation
across active computational units.

Sorting. Sorting is used widely in database query plans,
such as sorting a position list after an index scan or in a
order-based group by. Sorting algorithms suitable for hard-
ware acceleration have been extensively studied in existing
literature using GPUs [17, 46], FPGAs [29, 33], and ASICs
[24]. JAFAR can easily incorporate a fixed function sort
accelerator to support sorting. Because ASIC sorters are
generally costly in terms of area, implementations are typ-
ically limited to sorting a small number of elements at a
time. This does not prevent sorting larger datasets, using a
divide-and-conquer approach.

Indexing and Compression. Indexing in column-stores
[22, 23, 50] and working over compressed data [2, 31, 58] is
used to reduce the amount of data that must be scanned.
As NDP accelerators like JAFAR can perform extremely
e�cient scans, this raises the research question of whether
NDP obviates the need for indexing and compression.

Data Types. JAFAR currently supports integer data only.
While it can easily be extended to support additional fixed-
length data types like floating-point numbers, support for
variable-length data types such as strings is more di�cult to
adapt to JAFAR’s architecture. Some past work in NDP for
databases leaves filtering on strings as a task for the CPU to
handle [53]. However, it is worth noting that many modern
systems e↵ectively handle string columns as integers using
dictionary compression (e.g., to handle equality predicates).

NDP in Row-Stores and Hybrids. Near-data processing
for row-stores or hybrids that store data as column-groups
can be achieved by slightly altering the design of JAFAR
to be able to apply in parallel di↵erent filtering operations
to di↵erent attributes and record the result of the collective
filter accordingly. Comparing near data processing in row-
stores versus column-stores or hybrids with column-groups
is a very interesting open topic and may a↵ect the way we
think these basic architectures relate to each other regarding
their competitive advantages. Furthermore, NDP accelera-
tors could also be used to support e�cient projections on
row stores directly in memory. For example, to do this, JA-
FAR would simply activate a row in DRAM and read the
desired columns into internal bu↵ers. When the internal
bu↵ers are full, JAFAR will dump the contents back to a
pre-allocated memory location. This projection operation
would thus not require moving data into the CPU caches
and back. Removal of duplicate tuples will ultimately re-
quire support from the CPU since all intermediate results
must be coalesced and examined as a whole.

Memory Management. Data systems do not manage
how data in main memory is arranged in terms of which
particular DRAM DIMM stores which region of data. In-
stead, the kernel assigns address ranges to specific DIMMs
at boot, presenting the abstraction of main memory as a
single source. In traditional data systems, this can create
performance bottlenecks due to non-uniform memory ac-
cesses (NUMA), because accessing main memory can result
in waiting for another chip to supply the requested data.
Since JAFAR can only process data that is resident on its
DIMM, the data system needs to know what data is located
on which DIMM when invoking JAFAR. Therefore, prior to
invoking JAFAR, the operating system must first pin the

memory pages JAFAR will access to specific DIMMs. Pin-
ning guarantees that a virtual memory region is resident
in RAM and is accomplished via the mlock and munlock

system calls. To activate JAFAR, the data system invokes
system calls that specify the virtual starting and ending ad-
dress of the data region. The operating system can then
translate this into the physical address and activate the ap-
propriate JAFAR unit. Studying near-data processing APIs
for database systems as well as adding support for more than
one DIMM are essential future steps.

5. RELATED WORK
Building Hardware-Aware Data Systems. The data
management systems community has been studying e�cient
ways to store and access data in order to match underlying
hardware properties. Over the past fifteen years, there has
been work on cache-conscious database algorithms [49], work
on alternative layouts [3], as well as engines [7]. Column-
stores represent a major transformation for database archi-
tectures and were essentially designed from the start to be
hardware-aware [1]. More recent research has also focused
on sharing the cost of reading data across multiple queries
as one more e↵ort to minimize the amount of data moved
[13, 41, 43, 59]. Researchers have also proposed accelerating
predicate handling and data decompression for in-memory
scans with SIMD instructions [52].

Our work takes a di↵erent route, pushing computation to
memory through a combination of new hardware and soft-
ware designs. It allows to avoid moving even qualifying data
up the memory hierarchy and highlights the research oppor-
tunity to rethink how we can utilize past experiences in sys-
tem design with new hardware opportunities and co-design.

Database Accelerators. There has been a stream of novel
work on hardware accelerators for database query process-
ing in the past few years. Widx is an on-chip accelerator
for database hash index look-ups, reducing their cost by de-
coupling key hashing from pointer chasing [28]. Widx uses a
host core’s TLB and L1 D-cache as its data source. HARP is
a hardware accelerator for range partitioning that relies on a
special stream bu↵er framework to retrieve data from main
memory [54]. Q100 is a database processing unit (DPU)
that implements a domain-specific instruction set target-
ing database operations [55]. Traditional query plans can
be translated into DPU instructions and executed on Q100,
which uses a stream bu↵ering framework similar to that in
HARP. Ibex is an FPGA-based storage engine for a row-
store database embedded in the storage layer [53]. Follow-
ing the near-data processing principle in a lower level of the
overall memory/storage hierarchy than JAFAR, Ibex im-
plements selection, projection, and aggregation, within the
flash storage layer. All of these past e↵orts promise signif-
icant performance and power improvements over pure soft-
ware implementations.

Past work on database accelerators is orthogonal to our work
because all of them require movement of data from main
memory to either CPU cache or special bu↵ers, whereas our
approach leverages NDP to greatly reduce data movement
by processing data directly in memory. NDP presents an
interesting set of new challenges as well as opportunities

compared to o↵-chip or on-chip accelerator design, span-
ning both hardware design and database system design as
discussed in the previous section. In addition, if NDP accel-
erators were to co-exist with other on-chip database accel-
erators, there could be important implications for database
architectures that are open for exploration.

Database Machines. Database machines is another area
relevant to our work with considerable research done in the
1970s and early 1980s [8]. The main motivation was to create
hardware that is tailored to process database workloads e�-
ciently. Database machines were not widely adopted because
the custom storage media that these machines required were
expensive to manufacture and scale with increasing disk den-
sity. Furthermore, technology scaling at the time enabled
dramatic, steady improvements in CPU performance that
provided su�cient processing power.

However, the situation today is di↵erent for several reasons.
Diminishing returns from technology scaling motivate work
for NDP and hardware acceleration. Also, NDP can be ac-
complished without compromising the cost per bit of storage
by separating the DRAM logic process with the computa-
tional logic process [12, 26].

Near-Data Processing. NDP was originally proposed a
few decades ago as a potential way to address the fact that
CPUs were improving at a much faster rate than memory
technologies. Several opportunities and challenges of NDP
for general systems have been discussed in past work, such
as the IRAM Project [37], the DIVA project [20], Terasys
[14], and the Computational RAM project [11]. There has
been a recent resurgence of interest in near-data processing
due to both advancements in fabrication technologies as well
as the development in-memory data-systems [4]. Zhang et
al. [57] showed that high performance NDP can provide
critical throughput compared to modern high-performance
multi-core CPUs. Pugsley et al. [42] showed potential for
NDP to enhance MapReduce. Our work extends this line
of work towards a complete hardware-software co-design for
NDP in modern data systems.

6. CONCLUSION
We present JAFAR, a near-data processing hardware accel-
erator embedded into DRAM modules that implements the
select operator of a modern column-store. JAFAR scans and
filters columns directly in memory without pushing the data
up the memory hierarchy. We show that JAFAR can pro-
vide up to 9⇥ speedup compared to moving the data to the
CPU. In addition, we present a roadmap of research chal-
lenges and opportunities towards fully utilizing near-data
processing for database systems.

Acknowledgments. This work is partially supported by
the Swiss National Science Foundation and by the National
Science Foundation under Grant No. IIS-1452595.

7. REFERENCES
[1] D. J. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and

S. Madden. The Design and Implementation of
Modern Column-Oriented Database Systems.
Foundations and Trends in Databases, 5(3):197–280,

2013.
[2] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 671–682, 2006.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving Relations for Cache
Performance. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
169–180, 2001.

[4] R. Balasubramonian, J. Chang, T. Manning, J. H.
Moreno, R. Murphy, R. Nair, and S. Swanson.
Near-Data Processing: Insights from a MICRO-46
Workshop. IEEE Micro, 34(4):36–42, 2014.

[5] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu.
Main-memory hash joins on multi-core CPUs: Tuning
to the underlying hardware. In Proceedings of the
IEEE International Conference on Data Engineering
(ICDE), pages 362–373, 2013.

[6] N. L. Binkert, B. M. Beckmann, G. Black, S. K.
Reinhardt, A. G. Saidi, A. Basu, J. Hestness,
D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[7] P. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck:
Memory access. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
54–65, 1999.

[8] H. Boral and D. J. DeWitt. Database Machines: An
Idea Whose Time has Passed? A Critique of the
Future of Database Machines. In H.-O. Leilich and
M. Missiko↵, editors, Database Machines, pages
166–187. 1983.

[9] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis.
Cost-E�cient SHA Hardware Accelerators. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 16(8):999–1008, 2008.

[10] L. Dadda, M. Macchetti, and J. Owen. The Design of
a High Speed ASIC Unit for the Hash Function
SHA-256 (384, 512). In Proceedings of the Design,
Automation and Test in Europe Conference and
Exposition (DATE), pages 70–75, 2004.

[11] D. G. Elliott, W. M. Snelgrove, and M. Stumm.
Computational RAM A memory SIMD hybrid and its
application to DSP. In Proceedings of the IEEE
Custom Integrated Circuits Conference (CICC), pages
30.6.1–30.6.4, 1992.

[12] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and
N. S. Kim. NDA: Near-DRAM acceleration
architecture leveraging commodity DRAM devices and
standard memory modules. In Proceedings of the
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 283–295, 2015.

[13] G. Giannikis, G. Alonso, and D. Kossmann.
SharedDB: killing one thousand queries with one
stone. Proceedings of the VLDB Endowment,
5(6):526–537, 2012.

[14] M. Gokhale, W. Holmes, and K. Iobst. Processing in
Memory: The Terasys Massively Parallel PIM Array.

IEEE Computer, 28(4):23–31, 1995.
[15] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi,

M. Moe, and R. R. Taylor. PipeRench: A
Reconfigurable Architecture and Compiler. IEEE
Computer, 33(4):70–77, 2000.

[16] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani,
N. Satish, K. Sankaralingam, and C. Kim. DySER:
Unifying Functionality and Parallelism Specialization
for Energy-E�cient Computing. IEEE Micro,
32(5):38–51, 2012.

[17] A. Greßand G. Zachmann. GPU-ABiSort: optimal
parallel sorting on stream architectures. In Proceedings
of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2006.

[18] Q. Guo, X. Guo, Y. Bai, and E. Ipek. A resistive
TCAM accelerator for data-intensive computing. In
Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
339–350, 2011.

[19] S. Gupta, S. Feng, A. Ansari, S. A. Mahlke, and D. I.
August. Bundled execution of recurring traces for
energy-e�cient general purpose processing. In
Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
12–23, 2011.

[20] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame,
J. Draper, J. LaCoss, J. Granacki, J. Brockman,
A. Srivastava, W. Athas, V. Freeh, J. Shin, and
J. Park. Mapping Irregular Applications to DIVA, a
PIM-based Data-intensive Architecture. In Proceedings
of the ACM/IEEE Conference on Supercomputing,
1999.

[21] S. Idreos, F. Gro↵en, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two
Decades of Research in Column-oriented Database
Architectures. IEEE Data Engineering Bulletin,
35(1):40–45, 2012.

[22] S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR), 2007.

[23] S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-Memory Column-Stores.
Proceedings of the VLDB Endowment, 4(9):586–597,
2011.

[24] M. F. Ionescu. Optimizing Parallel Bitonic Sort. In
Proceedings of the International Parallel Processing
Symposium (IPPS), pages 303–309, 1997.

[25] B. Jacob, S. Ng, and D. Wang. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2007.

[26] J. Jeddeloh and B. Keeth. Hybrid memory cube new
DRAM architecture increases density and
performance. In Proceedings of the Symposium on
VLSI Technoogy (VLSIT), pages 87–88, 2012.

[27] W. H. Kautz. Cellular Logic-in-Memory Arrays. IEEE
Transactions on Computers (TC), 18(8):719–727,
1969.

[28] Y. O. Koçberber, B. Grot, J. Picorel, B. Falsafi, K. T.
Lim, and P. Ranganathan. Meet the walkers:
accelerating index traversals for in-memory databases.
In Proceedings of the Annual IEEE/ACM

International Symposium on Microarchitecture
(MICRO), pages 468–479, 2013.

[29] D. Koch and J. Torresen. FPGASort: a high
performance sorting architecture exploiting run-time
reconfiguration on fpgas for large problem sorting. In
Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays
(FPGA), pages 45–54, 2011.

[30] S. Kumar, A. Shriraman, V. Srinivasan, D. Lin, and
J. Phillips. SQRL: hardware accelerator for collecting
software data structures. In Proceedings of the
International Conference on Parallel Architectures and
Compilation (PACT), pages 475–476, 2014.

[31] J.-G. Lee, G. K. Attaluri, R. Barber, N. Chainani,
O. Draese, F. Ho, S. Idreos, M.-S. Kim, S. Lightstone,
G. M. Lohman, K. Morfonios, K. Murthy, I. Pandis,
L. Qiao, V. Raman, V. K. Samy, R. Sidle, K. Stolze,
and L. Zhang. Joins on Encoded and Partitioned
Data. Proceedings of the VLDB Endowment,
7(13):1355–1366, 2014.

[32] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz. Smart Memories: a modular
reconfigurable architecture. In Proceedings of the
Annual International Symposium on Computer
Architecture (ISCA), pages 161–171, 2000.

[33] J. F. Mart́ınez, R. Cumplido-Parra, and C. F. Uribe.
An FPGA-based parallel sorting architecture for the
Burrows Wheeler transform. In Proceedings of the
International Conference on Reconfigurable Computing
and FPGAs (ReConFig), 2005.

[34] Micron Technology. 1Gb: x4, x8, x16 DDR3 SDRAM,
2006.

[35] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In
Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
146–160, 2007.

[36] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E.
Smith. Fair Queuing Memory Systems. In Proceedings
of the Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 208–222, 2006.

[37] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
A Case for Intelligent RAM. IEEE Micro, 17(2):34–44,
1997.

[38] E. Petraki, S. Idreos, and S. Manegold. Holistic
Indexing in Main-memory Column-stores. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015.

[39] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. L.
Kersten. Database cracking: fancy scan, not poor
man’s sort! In Proceedings of the International
Workshop on Data Management on New Hardware
(DAMON), pages 1–8, 2014.

[40] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki.
ATraPos: Adaptive transaction processing on
hardware Islands. In Proceedings of the IEEE
International Conference on Data Engineering
(ICDE), pages 688–699, 2014.

[41] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki.
Sharing data and work across concurrent analytical
queries. Proceedings of the VLDB Endowment,

6(9):637–648, 2013.
[42] S. Pugsley, J. Jestes, R. Balasubramonian,

V. Srinivasan, A. Buyuktosunoglu, A. Davis, and
F. Li. Comparing Di↵erent Implementations of Near
Data Computing with In-Memory MapReduce
Workloads. IEEE Micro, 34(4):44–52, 2014.

[43] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M.
Lohman. Main-memory scan sharing for multi-core
CPUs. Proceedings of the VLDB Endowment,
1(1):610–621, 2008.

[44] J. Rao and K. A. Ross. Making B+- trees cache
conscious in main memory. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 475–486, 2000.

[45] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson,
and J. D. Owens. Memory access scheduling. In
Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), pages 128–138, 2000.

[46] N. Satish, M. Harris, and M. Garland. Designing
e�cient sorting algorithms for manycore GPUs. In
Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), pages
1–10, 2009.

[47] A. Satoh and T. Inoue. ASIC-hardware-focused
Comparison for Hash Functions MD5, RIPEMD-160,
and SHS. Integration, the VLSI Journal, 40(1):3–10,
2007.

[48] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks.
Aladdin: A Pre-RTL, Power-performance Accelerator
Simulator Enabling Large Design Space Exploration of
Customized Architectures. In Proceedings of the
Annual International Symposium on Computer
Architecture (ISCA), pages 97–108, 2014.

[49] A. Shatdal, C. Kant, and J. F. Naughton. Cache
Conscious Algorithms for Relational Query Processing.
In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 510–521, 1994.

[50] L. Sidirourgos and M. L. Kersten. Column Imprints:
A Secondary Index Structure. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pages 893–904, 2013.

[51] H. S. Stone. A Logic-in-Memory Computer. IEEE
Transactions on Computers (TC), 19(1):73–78, 1970.

[52] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Scha↵ner. Simd-scan: Ultra fast
in-memory table scan using on-chip vector processing
units. Proceedings of the VLDB Endowment,
2(1):385–394, 2009.

[53] L. Woods, Z. István, and G. Alonso. Ibex - An
Intelligent Storage Engine with Support for Advanced
SQL O↵-loading. Proceedings of the VLDB
Endowment, 7(11):963–974, 2014.

[54] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross.
Navigating Big Data with High-throughput,
Energy-e�cient Data Partitioning. In Proceedings of
the Annual International Symposium on Computer
Architecture (ISCA), pages 249–260, 2013.

[55] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and
K. A. Ross. Q100: the architecture and design of a
database processing unit. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems

(ASPLOS), pages 255–268, 2014.
[56] W. A. Wulf and S. A. McKee. Hitting the Memory

Wall: Implications of the Obvious. ACM SIGARCH
Computer Architecture News, 23(1):20–24, 1995.

[57] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L.
Greathouse, L. Xu, and M. Ignatowski. TOP-PIM:
throughput-oriented programmable processing in
memory. In Proceedings of the International
Symposium on High-Performance Parallel and
Distributed Computing (HPDC), pages 85–98, 2014.

[58] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-Scalar RAM-CPU Cache Compression. In
Proceedings of the IEEE International Conference on
Data Engineering (ICDE), page 59, 2006.

[59] M. Zukowski, S. Héman, N. J. Nes, and P. Boncz.
Cooperative Scans: Dynamic Bandwidth Sharing in a
DBMS. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 723–734,
2007.

