Monkey: Optimal Navigable Key-Value Store

Niv Dayan, Manos Athanassoulis, Stratos Idreos

Buffer

key X

Bloom filters (M bits)

fence pointers

memory

storage

LSM-tree

merge operations

bigger filters \rightarrow fewer false positives

lookup cost vs. memory

more merging \rightarrow fewer runs

lookup cost vs. update cost

suboptimal Bloom filters allocation

fixed false positive rates

$\frac{p}{p}$

most memory saves at most one I/O

minimize wasted lookup I/Os

\sum_p false positive rates

$= O (\log N \cdot e^{-M/N})$

optimal false positive rates

$\frac{p_0}{T^2}$

reallocating memory

write-optimized

merge greed

read-optimized

workload

hardware

optimal merge greed

0 < memory < ∞

buffer filters

range lookups

workload skew

caching

daslab.seas.harvard.edu/monkey