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ABSTRACT

Database researchers and practitioners have been building
methods to store, access, and update data for more than
five decades. Designing access methods has been a constant
effort to adapt to the ever-changing underlying hardware
and workload requirements. The recent explosion in data
system designs — including, in addition to traditional SQL
systems, NoSQL, NewSQL, and other relational and non-
relational systems — makes understanding the tradeoffs of
designing access methods more important than ever. Access
methods are at the core of any new data system. In this
tutorial, we survey recent developments in access method
design and we place them in the design space where each
approach focuses primarily on one or a subset of read per-
formance, update performance, and memory utilization. We
discuss how to utilize designs and lessons-learned from past
research. In addition, we discuss new ideas on how to build
access methods that have tunable behavior, as well as, what
is the scenery of open research problems.

1. INTRODUCTION

Access Methods and Data Systems. A key aspect of
all data management systems is the access methods they
employ. An access method is a collection of algorithms
and data structures for organizing and accessing data [36].
Finding the proper physical design (through static autotun-
ing [19], online tuning [13], or adaptively [38]) has been a
key data management research challenge for several decades.
The way we physically organize data on storage devices
(disk, flash, memory, caches) defines and restricts the pos-
sible ways that we can read and update it. For example,
a scan access method in a modern main-memory read opti-
mized column-store consists of an array of dense values and a
cache-conscious for-loop access pattern [1]. Traditional data
management systems access the base data through their scan
and index access methods, however, applications, use cases,
and the system design itself are becoming more complex. As
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a result, an increasing number of new access method designs
and variations of existing have been proposed.

The recent explosion of applications has led to the devel-
opment of relational and non-relational data systems typi-
cally categorized under the SQL, NoSQL, and newSQL ter-
minology [59]. Regardless of how a system is categorized,
its core functionality is storing and accessing data. Thus,
designing the right access methods remains a key challenge.
Given the broad spectrum of workloads and applications to-
day, it is more important than ever to both learn from past
work and to keep inventing new solutions. Helping with this
task is exactly the goal of this tutorial.

Design Tradeoffs. A close look at existing proposals on
access methods reveals that each is confronted with the
same fundamental challenges and design decisions again and
again. In particular, there are three quantities and design
parameters that researchers always try to minimize: (i) the
read overhead (R), (ii) the update overhead (U), and (iii)
the memory (or storage) overhead (M), henceforth called
the RUM owverheads [6]. Deciding which overhead(s) to op-
timize for and to what extent, remains a prominent part
of the process of designing a new access method, especially
as hardware and workloads change over time. For example,
in the 1970s one of the critical aspects of every database
algorithm was to minimize the number of random accesses
on disk; fast-forward 40 years and a similar strategy is still
used, only now we minimize the number of random accesses
to main memory. Today, different hardware runs different
applications, but the concepts and design choices remain the
same. New challenges, however, arise from the exponential
growth in the amount of data generated and processed, and
the wealth of emerging data-driven applications, both stress-
ing existing access methods. The three RUM overheads form
a design space with a three-way balance: optimizing for any
two overheads negatively impacts the third [6].

Similar tradeoffs are typically observed for access meth-
ods designed for domain-specific use cases. We identify
three broad classes: (i) high-dimensional data, (ii) time-
series data, and (iii) graph data. Typically the relevant
workloads are not transactional in the same way that re-
lational and key-value data are required to be.

Tutorial Outline and Goals. This tutorial gives a com-
prehensive introduction to the design tradeoffs of access meth-
ods, discussing the basic methodologies used to optimize for
each. Specifically, it includes the following sections:

1. Introduction: We start with an introduction of ac-
cess method design and how this affects data systems design
and broadly data management research. We give specific



examples both from research and industry (including both
startups and established companies).

2. Design Tradeoffs: We dissect the key tradeoffs of
access method design: read performance, update perfor-
mance, and memory. We present the intuition behind the
fact that we cannot optimize, at the same time, for all three
goals. Orthogonally to whether the access methods are de-
signed for reads, updates, or memory utilization, we high-
light that there are common high-level concepts across all
three groups: (a) logarithmic design, (b) continuous reorga-
nization, (c) space-efficient design.

3. Logarithmic Design: We start by presenting a com-
mon theme among several access methods: their logarithmic
design. We cover how such access methods are designed to
be optimized for reads [8, 28, 30, 47, 64, 67], for updates [17,
45, 49, 65, 72, 85], and for memory [9, 21, 48, 50, 57, 69].

4. Continuous Reorganization: We continue with an-
other common theme, workload-driven continuous reorgani-
zation which can be used either when optimizing for read
performance [30, 31, 32, 33, 35, 38, 39, 40, 41, 71] or, with
differential updates, for update performance (2, 4, 5, 29, 37,
42, 73, 75].

5. Space-Efficient Designs: We conclude the discus-
sion for the design tradeoffs presenting how space-efficient
access methods are used to offer good read performance
when the workload permits [11, 15, 16, 22, 63, 66, 82, 83],
and how we can trade memory utilization for performance
with approximate indexing and data skipping techniques [3,
27, 52, 58, 77, 86].

6. Other Access Method Classes: We dedicate a part
of this tutorial to three additional access method classes. In
particular, we present the core principles of access method
designs for (i) high-dimensional data, (ii) time-series data,
and (iii) graph data. We conclude this part by highlighting
the RUM tradeoffs in the key solutions for these data types.

7. Open Research Challenges: Finally, we discuss
open problems in access method design as they manifest in
modern data systems, including ideas about declarative and
shape-shifting access methods.

2. DESIGNING ACCESS METHODS

In order to understand the design space, we introduce
the audience to the different design elements used in access
methods. Typically, each design element offers specific be-
havior (e.g., read-friendly), however, in multiple cases, it can
be multi-faceted and offer different optimizations. Table 1
shows the classification of the papers we discuss. We discuss
three main design elements of access methods, logarithmic
design, continuous reorganization, and space efficiency, and
we see how each of them affects the read, the update, and
the memory overhead. The key point of this presentation is
the clustering of the presented access methods in terms of
techniques, in order to argue about the fundamental trade-
offs. That way we can learn how to navigate this access
method design “space” of read-optimized, update-optimized
and memory-optimized designs.

2.1 Logarithmic Design

We first introduce the generic concept of logarithmic de-
sign used by several data structures, like B-Trees, Tries and
variations of them. The key idea is to organize metadata
in a way that the search cost of a specific element is loga-
rithmic to the size of the dataset. We differentiate between

access methods with logarithmic design optimized for reads
and for updates.

Optimizing Reads. Tree-based access methods are typ-
ically optimized for read performance. Logarithmic-time
structures such as B-Trees [30] and Tries [28, 47, 61] of-
fer fast read access but increase space overhead. Tries, in
particular, typically suffer from space inefficiency. Adap-
tive Radix Tree [47] overcomes the shortcoming of prior tries
by offering update-friendly, and space-efficient trie indexing.
The key insight is that instead of following a common node
design throughout the tree, each node is locally adapted to
what is needed based on the density of the domain for the
corresponding values. Such data structures are the state-of-
the-art used by widely adopted commercial or open-source
data management systems. SB-Tree [64] is designed to sup-
port high-performance sequential disk access for long range
retrievals. It assumes an array of disks from which it re-
trieves data or intermediate nodes should they not be in
memory, by employing multi-page reads during sequential
access to any node level below the root. The bounded disor-
der access method is introduced as a generic framework for
access methods [52, 53]. The method aims at increasing the
ratio of file size to index size (i.e., to decrease the size of the
index) by building a shallow tree to create range partitioning
in wide ranges and using hashing for distributing the keys
in a multi-bucket node, corresponding to each range. The
bounded disorder access method does not decrease the index
size too aggressively for good reason; since, by doing that it
would cause more random accesses on the storage medium,
which is assumed to be traditional hard disks. On the con-
trary, the goal is to guarantee that point queries would get
read overhead similar to the what a hash index offers, and
range queries would get read overhead similar to what a
Bt-Tree index offers.

Optimizing Updates. We then continue to discuss how
logarithmic access methods can be used to efficiently treat
updates. Logarithmic access methods for updates typically
follow a hierarchical log-structured approach. When the top
level receives enough updates it is merged with lower lev-
els and these updates gradually propagate in the tree. A
prime example which has been used as inspiration for mul-
tiple follow-up approaches is the Log-Structure Merge Tree
(LSM-Tree) [65]. An LSM-Tree is comprised of a number
of exponentially growing levels; each level is k times larger
than the previous. Incoming data are buffered and when the
buffer is filled they are sorted and written on the first level
of the tree. When k such buffers accumulate, the sorted
buffers are merged and written out in the next level, a pro-
cess that keeps repeating. That way, the number of physical
writes per insert is kept low and the typically efficient se-
quential write on the device can be exploited. More recently,
a number of access methods use the logarithmic method to
offer a tradeoff between reads and updates [9, 37, 49, 72,
75, 85]. In addition to LSM [65], the Partitioned B-tree
(PBT) [29], and the Positional Delta Tree (PDT) [37] of-
fer good performance under updates but increase the read
costs and the space overhead. Fractal-Tree and FD-Tree [9,
49] use fractional cascading [20] to restrict the number of
reads to one per level. LSM-Trie [85] merges less greedily
by using T" substructures in each level. That way it reduces
write-amplification by a factor of T', at the expense of losing
the ability to do range-queries. BigTable uses LSM-Trees



Logarithmic Design

Continuous Reorganization

Space Efficient

Read Trees/Tries/Skiplists
[8, 28, 30, 47, 64, 67]

Cracking/Adaptive Indexing
[30, 31, 32, 33, 35, 38, 39, 40, 41, 71]

Bitmaps/Hash Index
[11, 15, 16, 22, 63, 66, 82, 83]

Update Log-Structured Trees Differential Updates
[17, 45, 49, 65, 72, 85] [2, 4, 5, 29, 37, 42, 73, 75]
Memory | Cache Optimizations Approximate/Data Skipping

[9, 21, 48, 50, 57, 69]

[3, 27, 52, 58, 77, 86]

Table 1: Classification of access method designs. Each row corresponds to the main optimization goal, and
each column corresponds to the underlying design element. Some approaches may fit in multiple cells; we
discuss this in detail in the tutorial content but for simplicity, we list them in the cell that fits the motivation

of each design.

with a fixed size ratio equal to ten between adjacent lev-
els [17]. Bigtable also uses Bloom filters to avoid reading
unnecessary levels. These Bloom filters are tuned statically
and uniformly across levels, a decision which can be further
optimized with careful tuning. In addition, Cassandra [46],
LOCS [81], VT-Tree [75], and bLSM [72] build on top of
BigTable, LevelDB, and LSM-Trees to provide logarithmic
access method design. LOCS [81] is a version of LevelDB
that utilizes SSD parallelism. VT-Tree [75] avoids repeat-
edly writing sorted data by stitching non-overlapping runs.
bLSM [72] restricts the number of levels, restricting read
and write performance irrespectively of the workload.

Optimizing for Memory. Several approaches leverage
knowledge about the memory hierarchy. Fractal Prefetch-
ing BT-Trees [21] use different node sizes for disk-based and
in-memory processing in order to have the optimal for both
cases. Cache-sensitive B*-Trees [69] physically cluster sib-
ling nodes together to reduce the number of cache misses,
and decrease the node size using offsets rather than point-
ers. SB-Trees [64] operate in an analogous way when the
index is disk-based, while BW-Tree [48] and Masstree [57]
present a number of optimizations related to cache mem-
ory, main memory, and flash-based secondary storage. SILT
[50] combines write-optimized logging, read-optimized im-
mutable hashing, and, a sorted store, carefully designed to
balance the tradeoffs of the various memory levels.

2.2 Continuous Reorganization

In the next part, we present the notion of continuous
reorganization, which we see in many workload-driven ap-
proaches. This approach is taken by query-driven adaptive
indexing and by differential updates. While the goal of the
adaptive indexing is classically optimizing for read perfor-
mance, the latter aims at offering efficient updates.

Optimizing Reads. Adaptive indexes are flexible data
structures designed to actively balance the tradeoffs. Most
existing data structures provide tunable parameters that can
be used to balance the tradeoffs offline, however, adaptive
data structures balance the tradeoffs online across a larger
area of the design space.

Notable proposals are Database Cracking [38], which re-
organizes the data in memory to match how queries access
data, and adaptive indexing [31, 33] that follows the same
principle as database cracking by focusing the index opti-
mization on key ranges used in actual queries. The hybrid,
Adaptive Merging [41] balances the read performance ver-
sus the overhead of creating an index. Although much more
flexible than traditional data structures, existing adaptive
data structures cannot cover the whole tradeoff spectrum as
they are typically designed for a particular type of hardware
and application.

Optimizing Updates. Differential files is the first access
method that proposed to store only differential updates in-
stead of in-place updates [73]. The fundamental idea is to
consolidate updates and apply them in bulk.

Differential updates have been further studied in the con-
text of updating analytical datasets with the stepped-merge
algorithm [42] and the Materialized Sort-Merge (MaSM) [4,
5] algorithm. The stepped-merge algorithm stores updates
lazily by maintaining updates in memory in sorted runs,
and eventually forming a BT-Tree of these updates using
an external merge-sort. MaSM operates at a similar level,
where updates are kept in sorted runs on flash devices and
merged only once more before being migrated to the main
data, forming large immutable sorted runs. The stepped-
merge approach aims at minimizing random I/O requests.
On the other hand, the MaSM algorithms focus on minimiz-
ing memory consumption and unnecessary writes on flash at
the expense of more, yet efficient, random read I/O requests.

2.3 Space-Efficient Designs

The third category to discuss is the space-efficient design

elements. We distinguish between designs that (i) have small
size but they support fewer types of queries, (ii) have small
size because they exploit underlying data organization, and
(iii) offer approximate indexing.
Optimizing Reads. Hash Indexing is a typical example
of an access method that has small size because it trades
functionality (i.e., trade how large is the variety of types of
queries it efficiently supports, for size). Next, we discuss
bitmap indexing. It is typically used for large data sets. It
leverages fast bitwise operations [15, 16, 63, 66, 82], and, to-
day, is commonly used for a number of applications ranging
from scientific data management [83] to analytics and data
warehousing [18, 55, 70, 78, 79, 84]. Bitmap indexes are uti-
lized by several popular database systems, including open-
source systems like PostgreSQL and commercial systems like
Oracle [74], SybaselQ [55, 66], and DB2 [14]. While bitmap
indexes typically are designed for read performance, UpBit
offers efficient updates at the expense of additional metadata
and a small penalty in read performance [7].

Optimizing for Memory. We discuss two main categories
for access methods that optimize for memory size by exploit-
ing existing structure of data (due to data generation or data
preparation): data skipping and approximate indexing.
Existing structure in data can be utilized by light-weight
access methods that can skip touching non-qualifying data
via simple checks. At its core, data skipping is a form of
scan enhancement. Zonemaps [27, 68, 80, 86] and Column
Imprints [77] are prime examples where we maintain meta-
data for zones of a column, such as min/max information,
and a scan uses that metadata to decide whether to scan a



zone or not. Such approaches work quite well when data is
clustered or fully sorted.

Approximate indexing capitalizes on existing structure of
the data in a similar way, but it can be equally efficiently
used both for point reads, and for range queries. BF-Tree [3]
implements approximate indexing using probabilistic data
structures like Bloom filters [11] in order to be able to tune
the accuracy of the index as a function of the size of the
index structure. In addition to Bloom filters, approximate
indexing can use other probabilistic data structures like quo-
tient filters [10] and cuckoo filters [26].

3. OTHER ACCESS METHOD CLASSES

In this tutorial, we primarily focus on the design elements
and tradeoffs of access methods in one-dimensional, key-
value or relational data. However, there is a wealth of use
cases that face similar tradeoffs and design decisions and re-
quire different, typically specialized solutions. We present a
representative subset.

First, spatial and other high-dimensional data require ac-
cess methods that can navigate efficiently a high-dimensional
space addressing the “curse of dimensionality” in the context
of access methods [56]. While this dimension is not present
for one-dimensional data, most of the other observations and
design decisions are shared. A second class is time-series
data. While time-series can be represented and stored by
relational systems, typically specialized time and data series
systems offer better performance by taking into account the
fundamental characteristics of time series: there is always a
sorted dimension (time or simply measurement id), and data
are appended either in the form of new — more recent — data
items, or new data series. A third class that we identify is
access methods for graph-based data. We see similar trade-
offs between read, update, and memory performance for all
three classes, having, however, a varying degree of similarity
to the design elements we outline in this tutorial.

3.1 High-Dimensional Access Methods

Spatial and other high-dimensional data (two or more di-
mensions) have long been attracting specialized solutions. A
key insight which has been used as the baseline to build upon
is R-Trees [34] which use a hierarchy of minimum bounding
rectangles (MBR). An R-Tree shares the main properties of
a BT-Tree: it is a balanced search tree and it is designed
for storage on disk. As the number of dimensions increases
the efficiency of an R-Tree is dramatically reduced facing
the “curse of dimensionality”. Similarly to the case of ac-
cess methods for uni-dimensional data, access methods for
high-dimension data face the RUM tradeoffs. Typically, we
cannot quantify the read cost with accuracy and we rely on
experimental estimations [12]. Due to the aforementioned
“curse of dimensionality”, however, it often makes sense to
break the space into small MBRs in order to have less over-
lap, leading to more metadata needed for the indexing struc-
ture, facing one of the RUM tradeoffs. On the other hand,
in this case, updating the index is more expensive. A high-
dimensional update-friendly access method typically allows
for higher overlap between MBRs, making, as a result, reads
more expensive, facing yet again, a RUM tradeoff. After the
initial proposal of R-Trees, a number of follow-up approaches
have been proposed, offering domain-specific optimizations
and different designs in terms of the balance of RUM trade-
offs, surveyed in detail [12, 56, 60, 62].

3.2 Time-Series Access Methods

The key insight for efficient time series data processing is
the representation of the series through segmented means
[44, 87], which allowed for space-efficient representation at
the expense of accuracy. Using this representation allowed
Lin et al. [51] to introduce the Symbolic Aggregate ap-
proXimation (SAX), which in turn was later extended to an
indexable representation called iSAX [76]. The main chal-
lenge iSAX faces is that of building time. In order to address
the long index building time, ADS follows the approach of
query-driven continuous reorganization to offer fast build
time with small memory footprint at the expense of gradu-
ally decreasing query latency [88], an approach that manages
to offer overall better workload latency as it cleverly takes
into account past queries to add structure gradually. The
updates in time-series workloads are significantly different
than in relational systems. Typically, the aforementioned
approaches treat updates that are in effect new time-series
in a large collection of time series leaving old data unaf-
fected and requiring an append-only style of updates. Irre-
spectively of the update scheme, both iSAX and ADS add
indexing metadata in order to facilitate read queries making
the update more expensive; in essence, optimizing for read
performance at the expense of both index size and update
overhead.

3.3 Graph Access Methods

In graph storage systems we do not typically have a clear
distinction between the access methods and the system. The
reason is twofold; first, the graph representation plays a big
role in performance and each representation may require
a very different way to access the data; second, there has
been a much smaller effort in standardization when com-
pared with relational systems, hence allowing more native
solutions which do not adhere to a global standard. How-
ever, the increased interest in graph-based data analysis has
lead to the development of a number of approaches that face
similar tradeoffs than the ones described in this tutorial.

Similar to the time-series data, graph data are heavily im-
pacted by the data representation. A space-efficient graph
representation is the compressed spared row (CSR) represen-
tation [25] which typically offers immutable data, a key dif-
ference from relational data. LLAMA, a recently proposed
graph analytics tool, however, allows operating on multi-
version CSR data, in essence allowing operating on graphs
in the presence of incremental data ingest and mutation [54].
LLAMA in essence exchanges additional storage needs (mul-
tiple versions) for efficient support of updates balancing off
the RUM tradeoffs in a similar way that RUM Conjecture
anticipates them to balance for any access method.

Summary. In this section, we briefly summarize the core
design decisions for each access method class, demonstrating
that similar tradeoffs as with one-dimensional data do exist.
However, covering extensively the design choices and the
tradeoffs of access methods of these three classes requires a
separate detailed study.

4. OPEN PROBLEMS

The final part of the tutorial presents open problems. A
recurring theme of this tutorial is that by studying and clas-
sifying all the access method designs, we identify different
strategies to achieve a specific optimization goal, e.g., op-



timize for read performance. In fact, there are two fun-
damentally different ways to reach a static point in the
read/update/memory design space: either by using a static
design, or by using an adaptive design which eventually leads
to the desired design point. A number of new research di-
rections build upon this concept. For example, how can we
build access methods that support a dynamic optimization
goal, which is reached either by a static or an adaptive to
the workload design [6, 43]¢? In addition, can we build an
“access method design optimizer” to help us choose the right
access method given specific hardware and workload proper-
ties [6/? Similar directions are taken at the system level.
For example, can we build a declarative storage engine that
does not have to choose between being either row-oriented or
column-oriented [23, 24]? In the final part of the tutorial,
we discuss these open problems and we highlight opportu-
nities for innovation.
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