
UpBit: Scalable In-Memory Updatable Bitmap Indexing

Manos Athanassoulis
Harvard University

manos@seas.harvard.edu

Zheng Yan∗

University of Maryland
zhengyan@cs.umd.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

ABSTRACT
Bitmap indexes are widely used in both scientific and commer-
cial databases. They bring fast read performance for specific types
of queries, such as equality and selective range queries. A major
drawback of bitmap indexes, however, is that supporting updates
is particularly costly. Bitmap indexes are kept compressed to mini-
mize storage footprint; as a result, updating a bitmap index requires
the expensive step of decoding and then encoding a bitvector. To-
day, more and more applications need support for both reads and
writes, blurring the boundaries between analytical processing and
transaction processing. This requires new system designs and ac-
cess methods that support general updates and, at the same time,
offer competitive read performance.

In this paper, we propose scalable in-memory Updatable Bitmap
indexing (UpBit), which offers efficient updates, without hurting
read performance. UpBit relies on two design points. First, in ad-
dition to the main bitvector for each domain value, UpBit maintains
an update bitvector, to keep track of updated values. Effectively, ev-
ery update can now be directed to a highly-compressible, easy-to-
update bitvector. While update bitvectors double the amount of un-
compressed data, they are sparse, and as a result their compressed
size is small. Second, we introduce fence pointers in all update
bitvectors which allow for efficient retrieval of a value at an arbi-
trary position. Using both synthetic and real-life data, we demon-
strate that UpBit significantly outperforms state-of-the-art bitmap
indexes for workloads that contain both reads and writes. In partic-
ular, compared to update-optimized bitmap index designs UpBit is
15−29× faster in terms of update time and 2.7× faster in terms of
read performance. In addition, compared to read-optimized bitmap
index designs UpBit achieves efficient and scalable updates (51−
115× lower update latency), while allowing for comparable read
performance, having up to 8% overhead.

1. INTRODUCTION
Bitmap indexing is a popular indexing technique for large data

sets. It leverages fast bitwise operations [9, 10, 20, 21, 32], and is

∗Work done while the author was a year-long intern at Harvard University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915964

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400

R
e
a
d
 L

a
te

n
c
y
 (

m
s
)

updates (thousands)

State-of-the-art Update-Optimized Bitmap Index

Figure 1: The problem: Read latency of the state-of-the-art update-
optimized bitmap index UCB [8] does not scale with # of updates.

commonly used for a number of applications ranging from scien-
tific data management [33] to analytics and data warehousing [11,
19, 24, 26, 27, 36]. Bitmap indexes are used by several popular
database systems, including open-source systems like PostgreSQL
and commercial systems like Oracle [25], SybaseIQ [19, 21], and
DB2 [7].

Bitmap indexes demonstrate significant benefits especially for
equality or low selectivity queries as we can quickly get all qualify-
ing rowIDs. In addition, they efficiently support analytical queries
that include logical operations in the where clause, as well as ad-
hoc queries with multiple selections. Bitmap indexes are also use-
ful for counting values, as well as counting NULLs, something typ-
ically not supported by other indexes.

A basic bitmap index consists of multiple bitvectors1; one for
each distinct value of the domain of the indexed attribute A. The
kth position of a bitvector corresponding to value v is set to one if
the kth position of the attribute A is equal to v. While without com-
pression the storage requirements for a bitmap index are very high
(the space required is proportional to the product of the relation size
multiplied by the domain cardinality of the indexed column), sev-
eral compression techniques have been proposed to greatly reduce
bitmap index size [1, 13, 14, 15, 16, 18, 34]. Typically these tech-
niques apply variations of run-length encoding in order to reduce
the size down to the same order of magnitude as the indexed col-
umn. Hence, every read operation requires a bitvector decode while
every update operation requires a decode followed by an encode.

The Problem: Scalability for Updates. The major drawback of
bitmaps indexes is offering updates. This is exacerbated by the
increasing need of applications to require support for both efficient
reads and updates, to deliver both good read performance and data
freshness [2, 3, 5, 17, 22, 30].

Read-optimized bitmap index designs are not suitable for up-
dates. The reason is that updating a bitmap index requires a series

1We use the term bitmap index for the access method and bitvector
for its building block throughout this paper.

of decoding and encoding actions on the individual bitvectors that
correspond to the old and new values. In order to efficiently support
updates, a bitmap index ideally should avoid repetitive decodings
and re-encodings.

Update Conscious Bitmaps [8] (UCB) is the state-of-the-art de-
sign for update-optimized bitmap indexes. The core idea of UCB
design is the auxiliary existence bitvector2 (EB) [21] that stores in-
formation about whether specific bits in the actual bitvectors are
valid or not. A significant drawback of UCB is that read perfor-
mance does not scale with updates. Figure 1 shows that the read
latency of UCB increases by more than 2× as updates are applied
to the bitmap index. In other words, as more updates arrive, read
queries become increasingly more expensive (the graph and the ex-
perimental setup is further discussed in Section 4).

UpBit: Scalable Updates in Bitmap Indexing. We present Up-
Bit, a scalable in-memory Updatable Bitmap index design. UpBit
achieves both (i) efficient reads, similar to read-optimized indexes,
and (ii) lower update time than both read-optimized and update-
optimized bitmap indexes. UpBit read performance remains stable
as more updates, deletes, or inserts are applied.

Similar to read-optimized bitmap indexes, for every value v of
the domain of the indexed attribute, UpBit maintains a value bitvec-
tor (VB). Each value bitvector stores a bit set to one at the positions
having value v for the indexed column, and zero otherwise. UpBit
introduces two new design elements to achieve efficient updates
and to maintain good read performance as updates accumulate.

First, for every value bitvector, UpBit introduces a correspond-
ing update bitvector (UB). Every incoming update results in two
changes, one in the update bitvector corresponding to the old value,
and another in the update bitvector of the new value. The aggregate
size of the uncompressed bitvectors for UpBit is twice as much as
for a read-optimized bitmap index, however, at any point in time
each update bitvector has only a small number of bits set to one.
This allows for negligible storage and CPU decoding overhead. In
order to maintain high compressibility the update bitvectors are pe-
riodically merged with value bitvectors and re-initialized. When
queried, UpBit combines – through a bitwise XOR – the value
bitvector and the corresponding update bitvector. When updated,
UpBit only needs to flip two bits, one in the UB of the new value
and on in the UB of the old value.

Second, UpBit introduces fence pointers to allow efficient re-
trieval of arbitrary values. Fence pointers allow direct access to any
position of a compressed bitvector. As a result, fence pointers help
to avoid unnecessary decodings by allowing a read query to jump
directly to the relevant area and decode only a small part of the
bitvector that contains the target information. Using fence pointers
as pivot elements also enables efficient multi-threaded decoding of
a bitvector during querying with minimal synchronization needed
during reconstruction.

While the use of multiple update bitvectors seems like more
work than updating in-place or simply having a single existence
bitvector, it allows UpBit to achieve drastically better read and
update performance, following the intuition of the RUM Conjec-
ture [4], because: (i) there is no single bitvector that receives all up-
dates, hence compressibility is higher and updating does not create
a single bottleneck on the auxiliary bitvectors; the cost is distributed
to multiple update bitvectors, (ii) fence pointers minimize decoding
and encoding action when updating and reading from the update
bitvectors, and (iii) UpBit maintains a threshold of compressibil-
ity after which value bitvectors and update bitvectors are merged,

2Called existence bitmap in prior work; here we use existence
bitvector to maintain consistent terminology throughout the paper.

and update bitvectors are reset. When the number of updates stored
in an update bitvector exceeds this threshold, UpBit performs the
merge operation during the following read query on the correspond-
ing domain value, which involves this particular bitvector. Each
read query decodes and on-the-fly merges the corresponding value
and update bitvectors, hence, in the merge-back operation the read
query initiates a write-back as well. Since UpBit maintains one up-
date bitvector per value of the domain, each pair of VB and UB can
be independently merged in a query-driven fashion, without having
to alter the structure of the entire bitmap index.

UpBit for Modern Data Stores. A bitmap index can be beneficial
for a modern data system, regardless of whether the physical data
organization is a single column, or groups of columns. UpBit’s
design is orthogonal to the underlying data layout, and it benefits
the read latency in either case. The benefit of using UpBit is pro-
nounced when data is organized in groups of columns, as using a
secondary index avoids reading more data.

Contributions. In summary, we make the following contributions.

• We introduce UpBit, an updatable bitmap index that allows
fast updates without sacrificing read performance. UpBit is
based on two design points:

– We introduce update bitvectors, a set of additional aux-
iliary bitvectors (one per value of the domain), that dis-
tribute the update burden.

– We introduce fence pointers for compressed bitvectors
as a way to avoid decoding entire bitvectors and effi-
ciently access only their relevant parts. Fence pointers
also enable efficient multi-threaded bitvector decoding
when querying.

• We show that we can achieve scalability in terms of the num-
ber of updates by periodically merging the changes to make
sure the compressibility of the auxiliary bitvectors is high.

• Through experimentation with synthetic and real data we
demonstrate the efficiency of UpBit in a variety of scenar-
ios varying update rate, data size, and cardinality of the in-
dexed column. We show that UpBit offers consistently neg-
ligible or small read latency overhead when compared with
a read-optimized bitmap index. In addition, when compared
with a state-of-the-art update-optimized bitmap index, Up-
Bit achieves significantly lower update cost and much faster
reads, scaling with the number of updates.

2. BITMAP INDEXES & UPDATES
In this section, we provide background on bitmap index literature

and we motivate our work by showing that existing bitmap indexes
are not suitable for workloads with frequent updates.

Bitmap Indexes. Initially designed for static analytic workloads,
bitmap indexes have been used in a variety of applications, tar-
geting both equality and range queries. A general binary repre-
sentation of the content of a column was first introduced using a
variable number of bits per value [32], however, typically today
bitmap indexes use a single bit per row [20, 21], and one bitvector
per value containing ones for rows that are equal to this value and
zeros otherwise. An unencoded bitmap index is depicted in Figure
2. The figure shows a column with three different values, and three
bitvectors, each containing a bit set to one when the corresponding
position is equal to the value each stores.

Keeping Bitvectors Small. Bitvectors contain a lot of redundant
data (a bit for every value of the domain for every position of the

build indexbuild index

rid

30

20

30

Column A

10

20

10

30

20

1

2

3

4

5

6

7

8

rid

0

0

0

10

1

0

1

0

0

0

1

0

20

0

1

0

0

1

1

0

1

30

0

0

0

1

0

1

2

3

4

5

6

7

8

Base Data Bitmap Index

Figure 2: Read-Optimized Bitmap Index.

1
2
3
4
5

6
7
8

1

1

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

 probe
(A in [10, 20])
 probe
(A in [10, 20]) ++ ==

10rid rid20

1
2
3
4
5

6
7
8

1

1

0
0
0

0

0
0

0

0

0
1
0

1

0
1

10 20

1

1

0
1
0

1

0
1

Pad 0 0 0

A in [10, 20]30

Pad 0 0 0

Figure 3: Searching a Bitmap Index for A ∈ [10,20].

column). This redundancy can be easily reduced by employing ap-
propriate encoding schemes [9, 10]. In the case of range queries,
bitmap indexes either perform bitwise OR operations between the
corresponding bitvectors, as shown in Figure 3, or employ a differ-
ent encoding scheme (range encoding), which however, has much
greater space requirements [10]. Read performance is further im-
proved by using compression in conjunction with encoding. The
first such design was Byte-aligned Bitmap Compression (BBC) [1].
Word-Aligned Hybrid (WAH) [34] encoding applies run-length en-
coding and has a few follow-up variations. To ensure memory-
alignment on modern architectures, WAH splits bits into words (32
bits each), which become the unit of compression. Using this en-
coding, a maximum run of 232 identical bits can be represented by
a single WAH fill word. However, in practice runs with identical
bits are shorter and require less bits to be encoded. This was ad-
dressed by follow-up proposals which use a few bits per word to
signify a long run of identical bits, or a specific pattern interleaved
with long runs. CONCISE [13] and Position List Word Aligned
Hybrid (PLWAH) [14] improve compression ratio when a single
bit or a short pattern interrupts a long run. In this work we use
the bitvector implementation of FastBit [33] which relies on WAH
compression [34].

Updates. Traditionally, bitmap indexes have been built for read-
intensive workloads, and as a result they are not well-suited for
updates [9, 32]. This happens because in-place updates cause a
costly decoding of the whole bitvector and a re-encoding to store
its updated version. For example to update rowID k from value v1 to
value v2 we would need to go to position k in the value bitvector for
value v1 and set the bit to zero, and then set the kth bit of the value
bitvector for v2 equal to one. Both bitvectors need to be decoded
in order to find the bits to be updated. The decoding begins at the
very beginning of the bitvector, and after the update the bitvector
needs to be encoded as a whole anew. On the contrary, handling
new rows is easier as new bitvectors can be appended at the end of
the current ones without the costly decode-then-encode cycle.
Update-Conscious Bitmaps. To handle the update problem, a
number of approaches have been proposed. The state of the art for

1
2
3
4
5

6
7
8

Pad

1

1

0
0
0

0

0
0
0

1

1

1
1
1

1

1
1

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

0 0 0

1

1

0
0
0

0

0
0
1

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

0 0

1

1

1
0
1

1

1
1
1

update
row 2 from
20 to 10

1
Inv
3
4
5

6
7
8
2

EB10rid rid20 30 EB10 20 30

(a) Update value of second row from 20 to 10 using UCB.

0

0

0
1
0

1

0
1
0

0

0
0
0

1
0

1
0
0

1

1

1
0
1

1

1
1
1

probe A=20

1
Inv
3
4
5

6
7
8
2

rid EB

1

Updated20

** ==
1

1

0
0
0

0

0
0
1

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

0 0

1

1

1
0
1

1

1
1
1

1
Inv
3
4
5

6
7
8
2

rid EB10 20 30

(b) Probe for value B using UCB.
Figure 4: Illustration of Update Conscious Bitmaps [8].

update-optimized bitmap index is the Update Conscious Bitmaps
(UCB) [8], which supports efficient deletes. Updates are treated
as a delete-then-insert using the new delete mechanism, while the
new value is appended in the end of the bitvector and a mapping
between the invalidated position and the appended value is kept.

Update Conscious Bitmaps use – in addition to a bitvector for
each value of the domain – a bitvector to store whether a given
row of the indexed column has been updated, called the existence
bitvector (EB) [21]. When a position x in EB is 0, the correspond-
ing rows of all value bitvectors are invalidated. When a bit of EB
is 1, the bitmap index can be accessed as usual. That way, every
delete is performed by setting to 0 the bit of the EB corresponding
to the deleted row. In-place updates are transformed to delete-then-
append operations (Figure 4a). By avoiding decoding and encoding
the value bitvectors at the time of an update, UCB offers faster up-
dates than other approaches, and particularly efficient deletes.

Reading from UCB, however, requires an additional AND op-
eration between the value and the existence bitvector (Figure 4b).
When all value bitvector positions are valid, and hence, every bit
of the existence bitvector is set to one, this bitwise AND is very ef-
ficient. As more updates or deletes are applied, however, the exis-
tence bitvector becomes less compressible because it contains more
bits that have been set to zero. Figure 1 plots the average read la-
tency of UCB as updates are applied over a relation with 100M
values of synthetic data in an in-memory setup (more details about
the experimental setup are in Section 4.1). The y-axis plots the
read latency as a function of the updates cumulatively applied on
UCB, shown on the x-axis. UCB read performance does not scale
with the number of updates. The reason is three-fold. First, the
scattered updates deteriorate the compressibility of the bitvectors.
Second, every update initiates both a decode and re-encode oper-
ation. Third, in order to support updates, UCB uses an additional
level of indirection maintaining the mapping of rowIDs for which
the values stored in the bitvector has been invalidated.

Figure 5 shows the average query latency in the same experi-
ment presented in Figure 1, when compared with a read-optimized
bitmap index that supports in-place updates. The black bars corre-

 0

 5

 10

 15

 20

 25

 30

Overall Update Read

L
a

te
n

c
y
 (

m
s
)

In-place UCB

Figure 5: Average latency of UCB vs. in-place updates: while
UCB offers 2.88x faster execution for updates, searching with a
read-optimized bitmap index that employs in-place updates is 3.57x
faster, leading to a 2x overall performance degradation for a mixed
workload, with 10% updates.
spond to a bitmap index with naïve in-place updates and the pattern
bars correspond to UCB. The first two bars show the average query
latency for the full workload (90% read queries and 10% updates).
The second pair of bars shows the average update latency for the in-
place updates and UCB, and the third pair shows the average read
latency for the two approaches. While UCB offers 2.57× faster up-
date performance when compared to in-place updates, both UCB’s
read latency (3.45×), and overall average query latency (1.98×) is
significantly higher than in-place updates. When answering a read
query, UCB needs to perform an additional AND operation with
the existence bitvector which, in turn, needs to decode the entire
value bitvector. In addition, UCB needs to consult a translation ta-
ble for every invalidated row, and consequently do another AND
operation. The fast update operation – just update a single bit in
a highly compressible bitvector to begin with – is not enough to
address the slow query time. This behavior is exacerbated as more
updates accumulate, as shown in Figure 1.

In order to better understand why UCB degrades as more updates
are accumulated, Figure 6 shows the breakdown of the response
time of equality queries and updates for UCB. In particular, Figure
6 presents the breakdown of the response time of equality queries
and updates when we use the UCB design, (i) after the first update,
(ii) after 1K updates, (iii) after 10K updates, (iv) after 200K up-
dates, and, (v) after 1M updates. The cost to update in-place does
not depend on the number of past updates, while both costs to up-
date and to read using UCB depends heavily on the past updates.
Further, UCB initially minimizes the updating cost because it only
changes one bit in a highly compressible bitvector and completely
avoids the update cost by updating the existence bit. This approach
leads to very fast updates as long as there are only a few bits in
the existence bitvector that are set to zero, and as a result, the exis-
tence bitvector is highly compressible. As we have more updates,
however, the existence bitvector becomes less compressible, hence,
updating it becomes more expensive, leading to higher overall up-
date cost. During a read query, UCB always has to pay the price
of decoding the bitvector corresponding to the search predicate, as
would any design. Decoding the value bitvectors is a fixed cost
that is not affected by the number of updates. UCB, however, re-
quires the additional step of the bitwise AND operation between
the bitvectors and the EB, creating a cost factor which increases as
more updates accumulate (and EB becomes less compressible).
Updating Bitmap Indexes With Low Impact on Read Perfor-
mance. Figure 6 helps us pinpoint what should be optimized
in order to offer efficient updates. The update cost of UCB con-
tains the cost of updating the existence bitvector. While this cost
is negligible for up to 10k updates, as more updates are applied
it increases exponentially. In addition, the read time due to the
bitwise AND between the value and the existence bitvector is the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

U R U R U R U R U R
UCB 1st UCB 1K UCB 10K UCB 200K UCB 400K

L
a

te
n

c
y
 (

m
s
)

Decode EB
Update EB

Decode VB
Bitwise AND with EB

Figure 6: Breakdown of update and read time: as more updates ac-
cumulate UCB spends more time in updating the EB when updating
and ANDing VB with EB when querying.

most expensive operation. The approach proposed in this paper,
UpBit, aims at addressing these two factors. First, by using multi-
ple update bitvectors and periodically merging them during query
time with the corresponding value bitvector, we guarantee that the
cost to update the auxiliary bitvector is always kept low. Second,
by distributing the update overhead to multiple UB (as opposed to
one EB) we have higher compressibility and we bound the query
cost as well. In addition, having multiple UBs allows the adaptive
reconstruction of VB by merging them on a query-driven basis.

3. UpBit: EFFICIENT READS AND
WRITES FOR BITMAP INDEXES

In this section, we present UpBit in detail, and describe how it
can offer efficient updates without compromising read query per-
formance. UpBit shifts the update burden from a single bitvector
(the existence bitvector of UCB) to multiple update bitvectors, and
builds an efficient way to search the value of a specific position of
an encoded bitvector by introducing fence pointers.

We begin by introducing the notation and the UpBit structure.
Then we describe each operation: probing the index, deleting a row,
updating a value, inserting new data, and any auxiliary operation
needed to support these actions.

3.1 UpBit Data Structure
Notation. UpBit is a bitmap index over an attribute A of a table
T . The domain of A has d unique values, hence UpBit contains
d value bitvectors V B = {V1,V2, ...,Vd} and d update bitvectors,
UB = {U1,U2, ...,Ud}.
The Internals of UpBit. For every value of the domain of the in-
dexed attribute, UpBit stores a value bitvector showing which rows
contain the corresponding value. For example, Figure 7a shows the
three bitvectors corresponding to the attribute A values 10, 20, and
30, respectively. Rows 4 and 6 are equal to 10, rows 2, 5 and 8 are
equal to 20, and rows 1, 3, and 7 are equal to 30, and as a result, the
value bitvectors have the corresponding bits set to one. In addition,
UpBit uses one additional bitvector per value, termed the update
bitvector (UB). Each update bitvector is initialized with zeros with
size equal to the one of the value bitvectors of the index. The up-
date bitvectors are used to mark which bits of the value bitvector
are changed. In particular, the current value of a row of the UpBit is
given by the XOR between the corresponding position of the value
and the update bitvectors. The update bitvectors distribute the bur-
den of each update to multiple bitvectors, keeping the update cost
low, and, at the same time, the compressibility of these bitvectors
high in order to have minimal impact on read performance.
Value-Bitvector Mapping (VBM). A common operation in any
bitmap index is to locate the bitvector, Vi, corresponding to a spe-
cific value, v, of the domain. Any query that needs to search the

1

1

0
0
00 00

0

0
0

0

0

0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

1
2
3
4
5

6
7
8

UBUBVB
10

rid
20 30

VB VBUB UB

build indexbuild index10

10

30
20
30

20

30
20

1
2
3
4
5

6
7
8

Column Arid

Base Data UpBit Index

(a) The internals of UpBit.

1

1

01
2
3
4
5

6
7
8

0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

Pad

1
2
3
4
5

6
7
8

Pad

0 0 0 00 0 Pad 0 0 0 00 0

1

1

0
0
0

0

0
0

0

0

0
1
0

0

0
0

0

0

0
1
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

update
row 2 from
20 to 10

insert value 20delete row 2

1
2
3
4
5

6
7
8

UBUBVB
10

rid

rid

rid

rid

20 30
VB VBUB UB UBUBVB

10 20 30
VB VBUB UB

1

1

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

1
2
3
4
5

6
7
8

UBUBVB
10 20 30

VB VBUB UB

1

1

0
0
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

UBUBVB
10 20 30

VB VBUB UB

0 0 0 00 0 9 0 0 0 01 0

(b) Updating, deleting, and inserting using UpBit.

0

0

0
1
0

0

0
0

0

0

0
1
0

1

0
1

probe A=20
⊕ =

1
2
3
4
5

6
7
8

20
VB

0

0

0
0
0

1

0
1

UpdatedUB

1

1

0
0
00 00

0

0
0

0

0

0
1

0

0
0

0

0

0
1
0

0

0
0

0

0

0
0
0

0

0
0

0

0

0
1
0

1

0
1

0

0

1
0
1

0

1
0

1
2
3
4
5

6
7
8

UBUBVB
10

rid rid
20 30

VB VBUB UB

(c) Search for a single value with UpBit.
Figure 7: Illustration of UpBit.

bitmap index performs this action. This is typically implemented
using a dictionary which returns the bitvector id i, given v.

No Space Overhead. The update bitvectors are initially empty,
thus, they can be very efficiently compressed as 0-Fill words. In
the beginning of UpBit’s operation, the update bitvectors are prac-
tically single words, hence, they have negligible impact on the over-
all size of the index.

Interpreting Update Bitvectors. In order to return the value of
the position of any value bitvector, UpBit performs a bitwise XOR
between this value bitvector and the corresponding update bitvec-
tor, as shown in Figure 7c. When a column is indexed with UpBit
the update bitvectors are initialized to zero (shown in Figure 7a).
Effectively, the XOR between the VB and UB at the initial state of
the index will always result to the VB itself. As an optimization, we
always maintain a counter of the number of bits set to one in each

update bitvector and if it is equal to zero, we can avoid performing
the XOR altogether.

3.2 UpBit Operations
Let us now consider, in detail, how each of the probe, delete,

update, and insert operations are designed using UpBit.
Searching. We first discuss how UpBit is probed for exact match
queries; that is, how we find whether a value, val, exists in the
indexed column, and in which position.

The first step is to find the bitvector i that corresponds to val,
using the VBM which links values to bitvectors. The next step is
to check whether any updates have occurred that are marked on Ui.
If all bits in Ui are unset then no updates exist; more specifically,
there have been no updates on val. Otherwise, if even a single bit
is set, then updates on val exist and UpBit has to account for them.
In order to return the right bitvector UpBit performs a bitwise XOR
between Vi and Ui.

search (index: UpBit, value: val)
1: Find the i bitvector that val corresponds to
2: if Ui contains only zero then
3: return Vi
4: else
5: return Vi⊕Ui
6: end if

Algorithm 1: Searching UpBit for value val.

For example, in Figure 7c we probe for value equal to 20. In this
case we first check the update bitvector for value 20 and if not all
bits are set to zero, UpBit performs a XOR between Ui and Vi in
order to get the positions that contain 20 (Algorithm 1).
Deleting a Row. We continue with how UpBit handles the deletion
of a row. In this case we assume that the workload consists of the
delete of a specific row, k.

delete_row (index: UpBit, row: k)
1: Find the val of row k
2: Find the i bitvector that val corresponds to
3: Ui[k] = ¬Ui[k]

Algorithm 2: Deleting row k with UpBit.
In order to make sure that the index will never return row k as an

answer to any query, we first need to retrieve the value of this row
(line 1 of Algorithm 2), and then find the update bitvector corre-
sponding to this value Bi (line 2 of Algorithm 2). The first operation
constitutes one of the main challenges when supporting general up-
dates in bitmap indexes: retrieve the value of an arbitrary row. The
last step of deleting a row is to negate the contents of the selected
update bitvector for row k: Ui[k] = ¬Ui[k]. The whole process is
shown by Algorithm 2, and is depicted in Figure 7b in the bottom
left part. In prior work, deletes are supported through the existence
bitvector which invalidates the whole row [8, 21], in order to avoid
the costly retrieval of the value of an arbitrary position. Here, we
discuss how to efficiently do so.

get_value (index: UpBit, row: k)
1: for each i ∈ {1,2, ...,d} do
2: temp_bit =Vi.get_bit(k)⊕Ui.get_bit(k)
3: if temp_bit then
4: Return vali
5: end if
6: end for

Algorithm 3: Get value of row k using UpBit.
Retrieving the Value of a Row. Algorithm 3 shows how to retrieve
the value of row k. Instead of going to base data which may be on
disk, we search all bitvectors. This operation can be aggressively
parallelized as it is embarrassingly parallel: each bitvector search

can run independently. In fact, for every bitvector we run Algo-
rithm 4 using a small amount of additional metadata to avoid de-
coding the whole bitvector, effectively reducing the decoding cost.

get_bit (bitvector: B, row: k)
1: pos = f ence_pointer.nearest(k)
2: while pos < k do
3: if isFill(B[pos]) then
4: value, length = decode(B[pos])
5: if (pos+ length)∗31 < k then
6: pos+= length
7: else
8: Return value
9: end if

10: else
11: if pos∗31− k < 31 then
12: Return B[pos]&(1 << (k%31))
13: else
14: pos++
15: end if
16: end if
17: end while

Algorithm 4: Get kth bit of a bitvector using UpBit.

Reducing Decoding Cost. A large fraction of the time to get the
value of the kth row goes to decoding the bitvectors before the XOR
operation, and reading the kth bit. The reason why this cost is high,
is that in order to access the kth bit we need to decode all previous
bits; there is no way to decode a subset of the bitvector knowing
in which position the decoding starts with the existing encoding
schemes. We address this performance limitation by adding fence
pointers which enable efficient partial decoding close to any arbi-
trary position3. Both encoded and not encoded bitvectors are or-
ganized in words. The words of a not encoded bitvector contain
its raw bits, while the words of an encoded bitvector may represent
multiple unencoded words. The metadata of fence pointers form a
small separate index of the encoded bitvector which allows direct
access to the encoded words corresponding at known positions of
the not encoded bitvector. Fence pointers have a predefined granu-
larity on the not encoded bitvector, g. For a bitvector with n not en-
coded words, fence pointer i stores the offset of the encoded word
that contains the unencoded word i · g : i = 1,2, ..., n

g . Every en-
coded word is aligned to an unencoded word (the reverse is not al-
ways true, i.e., a single encoded word encodes multiple unencoded
words). As a result the granularity g is only approximate. Figure
8 details such an example. The array on the top contains the unen-
coded word id (fence) and the offset of the encoded word that starts
with the contents of the said word id. An encoded word always
starts at the beginning of a not encoded word, which in turn always
contains 31 bits. In this example we are looking for the position of
bit 62073, this will be in the 62073÷31 = 2002 unencoded word,
in position 62073 mod 31 = 11. Using the fence pointer index we
find that we need to decode w97 to retrieve unencoded word 2002,
and then look for the 11th bit. If we were looking for the position of
bit 62150 we would probably need to decode more than one word
(e.g., continue to word w98) depending on the exact distribution of
the bits. In general, fence pointers help to avoid both unnecessary
CPU processing (decoding) and memory consumption (storing the
unnecessary parts of the decoded bitvector). However, if the granu-
larity becomes too fine (g becomes too small) the overhead of main-
taining fence pointers increases; we effectively use more space to
index the same information. In Sections 4.4 and 4.6 we show what
granularity is beneficial through extensive experimentation.

Updating a Row. The most challenging operation is updating the
value of a row. We assume that the operation requests to change the

3The existence bitvector of UCB can also benefit from fence point-
ers; UCB needs to checks whether a position is valid.

11 0 1 0 0 1 0 1 1 0 1 1 1 0 0

1003 2002 3007

w99 w100 w91 w92 w93 w94 w95 w96 w97 w98

w49 w97 w151

fence pointer index

encoded bitvector

partially decoded bitvector

Figure 8: Fence pointers allow efficient partial decoding by storing
a mapping between encoded and unencoded words of the bitvector.

value of row k to val. The top part of Figure 7b depicts the update
operation of row 2 from 20 to 10.

In order to indicate the new value, UpBit flips the bit of posi-
tion k of the bitvector corresponding to val (Ui). However, this is
not enough, because we need to negate the bit of position k of the
bitvector corresponding to the old value as well (U j). Since we
do not necessarily know the old value of position k, we need to
retrieve this value similarly to what we described before. The last
two steps are the negation of the corresponding bits: Ui[k] =¬Ui[k],
and U j[k] = ¬U j[k]. Algorithm 5 describes this process.

update_row (index: UpBit, row: k, value: val)
1: Find the i bitvector that val corresponds to
2: Find the old value old_val of row k
3: Find the j bitvector that old_val corresponds to
4: Ui[k] = ¬Ui[k]
5: U j [k] = ¬U j [k]

Algorithm 5: Update row k to val with UpBit.
Inserting a Row. The last operation with a bitmap index is insert-
ing a new row. This operation does not require to update existing
values, hence, we do not need to decode any bitvectors; we extend
the current bitvectors so there is some necessary bookkeeping.

We first need to find the bitvector corresponding to val (Ui). Fol-
lowing Fastbit implementation of WAH, we use active words [34,
35] to append at the end of the bitvectors. The last word stores two
variables: the literal value and the number of bits. Hence, we do
not need to fully decode the bitvector to get the last word. Typi-
cally, the new bit can be appended, and the size of the bitvector is
increased without a physical expansion of the encoded bitvector. In
rare cases, the last word is not enough and the bitvector needs to
be extended. In this case, the bitvector is extended by a word and
additional padding space is added in the end of the bitvector for
future inserts. Once the padding space is available, we increase the
Ui size by one element and we set the new bit equal to one on the
Bi bitvector. For example, in the bottom right part of Figure 7b we
see how inserting value 20 is handled. The overall process is also
described in Algorithm 6.

insert_row (index: UpBit, value: val)
1: Find the i bitvector that val corresponds
2: if Ui does not have enough empty padding space then
3: Extend Ui padding space
4: end if
5: Ui.#elements++
6: Ui[#elements] = 1

Algorithm 6: Insert new value, val.
While the insertion can happen directly at Vi as well, we select to

use Ui because it is typically smaller and more compressible, hence
every operation is more efficient. In addition, we follow a merging
policy between value and update bitvectors during read queries to
exploit existing processing as we discuss in Section 3.3. A major
difference of our approach when compared against prior work [8] is
that because it does not invalidate rows, there is no need for keeping
a mapping when the value of a row is updated. However, as updates
or deletes accumulate update bitvectors become less compressible
and need to be merged back with the main value bitvectors.

3.3 Scaling With the Number of Updates
As UpBit accumulates updates, deletes and inserts, its update

bitvectors become unavoidably less compressible, leading to ex-
pensive bitwise operations and decodings. We address this prob-
lem by merging each update bitvector with the corresponding value
bitvector, when their size is larger than a threshold.

The decision whether the two bitvectors are going to be merged
is based on the number of accumulated updates. We describe in
Section 4.4 how to tune the merging threshold. Once the thresh-
old is determined to T updates, UpBit can start merging the up-
date and the value bitvector as follows: it monitors the number
of updates applied to each bitvector independently and when the
accumulated updates are more than T , the corresponding update
bitvector is marked as “to be merged”. In the next search operation
involving this bitvector the merging between the value and the up-
date bitvector will happen in order to produce the result expected
by the user (Vi⊕Ui). This result will also be saved as the new value
bitvector while the update bitvector will be re-initialized. This pro-
cess is described in Algorithm 7.

merge (index: UpBit, bitvector: i)
1: Vi =Vi⊕Ui
2: comp_pos = 0
3: uncomp_pos = 0
4: last_uncomp_pos = 0
5: for each i ∈ {1,2, ..., length(Vi)} do
6: if isFill(Vi[pos]) then
7: value, length+= decode(Vi[pos])
8: uncomp_pos+= length
9: else

10: uncomp_pos++
11: end if
12: if uncomp_pos− last_uncomp_pos > T HRESHOLD then
13: FP.append(comp_pos,uncomp_pos)
14: last_uncomp_pos = uncomp_pos
15: end if
16: comp_pos++
17: end for
18: Ui← 0s

Algorithm 7: Merge UB of bitvector i.

After the update threshold is met, we perform the merge during
a subsequent query evaluation. The reason is that at this point we
calculate anyway the result of the XOR between the value and the
update bitvector to return it as a result of the read query. Hence,
by writing back after a read query we avoid the unnecessary over-
head of performing bitwise XOR during updates. When the bitvec-
tors are merged, Ui is reset to zeros, while Vi is updated and its
fence pointers are recalculated during encoding. Last but not least,
UpBit’s multiple update bitvectors allow the merging mechanism
to happen in a bitvector-by-bitvector case. On the contrary, prior
work UCB uses the existence bitvector, and as a result it needs to
perform a merge operation of the existence bitvector with all value
bitvectors at once, increasing the merging overhead drastically.

4. EXPERIMENTAL ANALYSIS
In this section we provide a detailed experimental analysis of Up-

Bit against state-of-the-art updatable bitmap indexes and state-of-
the-art read-optimized bitmap indexes. We show that UpBit brings
drastically faster overall workload execution. When compared to
the update-optimized bitmap index UpBit achieves both faster up-
dates and faster reads. On the other hand, when compared to read-
optimized bitmap indexes it achieves similar read performance and
much faster update performance.

4.1 Experimental Methodology
Infrastructure. Our experimentation platform is a server running
Debian “Wheezy” with kernel 3.18.11. The server is equipped with

four sockets each with an Intel Xeon CPU E7-4820 v2, running at
2GHz. Each processor has 16MB L3 cache, and supports 8 hard-
ware threads, and 8 hyper-threading threads, for a total of 64 hard-
ware contexts with HT enabled. The main memory is 1TB, corre-
sponding to 256GB per socket, and the storage is based on a RAID-
5 configuration of 300GB 15KRPM SAS hard disks.

Implementation. The implementation of UpBit is a standalone
implementation in C++. A key component in UpBit is the design
of bitvectors. For this, we built on top of the FastBit bitvector [33]
which we modified to support update bitvectors, fence pointers,
and multi-threading. In order to parallelize the search of different
bitvectors we use C++11 threads.

Tested Approaches. We compare UpBit with both state-of-the-art
update-aware bitmap indexes and read-optimized indexes. Specifi-
cally we compare UpBit against (i) read-optimized bitmap indexes
supporting in-place updates, for which we modify FastBit, and (ii)
UCB, which we reimplemented using FastBit in order to provide
a more efficient implementation and to use the same underlying
bitvector logic for a fair comparison.

Select Operator API. We design and we test UpBit as a drop-in
replacement for a select operator in a modern system. Its input is
a column where we want to perform a selection and its output is
a set of qualifying positions in the column. This is equivalent to a
standard scan or index scan operator. We also compare against a
modern hardware optimized scan (with multi-core, SIMD and tight
for-loops) as a sanity check.

Workloads. We experiment with both synthetic and real-life data
sets. We generate synthetic integer data varying two key parameters
for the performance of a bitmap index: the size of the data set, n,
and the cardinality of the domain, d. The distribution of the values
follow either the uniform or the zipfian distribution. We further test
with the Berkeley earth data [6] and with TPC-H [28].

Performance Metrics. Experiments showing response time al-
ways show the average of ten runs with standard deviation below
3% while throughput experiments show real-time behavior using a
moving average of a small fraction of the experiment duration. We
show both complete workload performance – that is, a mix of reads
and writes – and also individual read and write performance.

4.2 Scalable Updates With UpBit
Read Performance. The first experiment demonstrates the scala-
bility of UpBit in terms of the number of updates. The experiment
has the same setup as the one shown in Figure 1. The initial dataset
consists of n = 100M tuples, with domain cardinality d = 100. The
workload contains equal number of updates and equality queries,
both uniformly distributed across the domain (we discuss range
queries later on). Figure 9 shows the results for UCB and UpBit.
While UCB read latency increases unsustainably, UpBit scales, of-
fering stable latency as more updates are applied.

Impact of Updates. Next, we show that the average read latency of
a workload with updates is minimally impacted, and that the update
latency is much faster than any previous approach. We show these
observations for a variable percentage of updates in the workload.

We experiment with a synthetic data set consisting of n = 100M
values, taken from a domain with d = 100 unique values. We
present average read and update time for three different workloads:
one that contains 1% updates in the query mix, one that contains
5% of updates, and finally one that contains 10% updates in the
query mix of 100k operations.

Figures 10 and 11 show the results. The white bars correspond
to a read-optimized bitmap index that employs in-place updates,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400

R
e
a
d
 L

a
te

n
c
y
 (

m
s
)

updates (thousands)

UCB
UpBit

Figure 9: When stressing UpBit with up-
dates, it delivers scalable read performance,
addressing the most important limitation ob-
served for UCB.

 0

 5

 10

 15

 20

 25

 30

 35

1% update 5% update 10% update

U
p
d
a
te

 L
a
te

n
c
y
 (

m
s
)

In-place
UCB

UpBit

Figure 10: UpBit delivers 51− 115× faster
updates than in-place updates and 15− 29×
faster updates than state-of-the-art update-
optimized bitmap index UCB.

 0

 5

 10

 15

 20

 25

 30

 35

1% update 5% update 10% update

R
e
a
d
 L

a
te

n
c
y
 (

m
s
)

In-place
UCB

UpBit

Figure 11: UpBit outperforms update-
optimized indexes by nearly 3× in terms
of read performance while it loses only 8%
compared to read-optimized indexes.

 0

 500

 1000

 1500

 2000

 2500

 3000

In-placeUCB UpBit In-placeUCB UpBit In-placeUCB UpBit

1% update 5% update 10% update

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Update

 0

 500

 1000

 1500

 2000

 2500

 3000

In-placeUCB UpBit In-placeUCB UpBit In-placeUCB UpBit

1% delete 5% delete 10% delete

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Delete

 0

 500

 1000

 1500

 2000

 2500

 3000

In-placeUCB UpBit In-placeUCB UpBit In-placeUCB UpBit

1% insert 5% insert 10% insert

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Insert

(a) UpBit vs. UCB vs. in-place for updates. (b) UpBit vs. UCB vs. in-place for deletes. (c) UpBit vs. UCB vs. in-place for inserts.
Figure 12: As we vary the percentage of updates, deletes or inserts from 1% to 10%, UpBit has the lowest overall workload latency when
compared with any other setup. UpBit achieves similar read performance to a read-optimized bitmap index and drastically better updates (a)
and deletes (b) than both read-optimized and update-optimized indexes. When inserting new values (c) all approaches have a similar low
overhead on read performance. In-place updates cannot gradually absorb the new values, hence, inserting cost does not scale.

the grey bars to UCB and the black bars to UpBit. UCB deliv-
ers 3.43− 3.77× faster update latency than in-place updates. Our
approach is significantly faster delivering 51−115× faster update
time than in-place updates (15−29× faster than UCB). The biggest
factor of in-place updates is to actually decode and then encode the
corresponding value bitvectors, while for UCB it is decoding and
updating the existence bitvector. On the other hand, UpBit updates
two highly compressible update bitvectors leading to much lower
update latency. Figure 11 shows the impact in read latency. The
read latency of the approach with in-place updates is effectively
the ideal read latency of a bitmap index because there is no auxil-
iary bitvectors or other data to read from. UCB on the other hand
merges the existence bitvector with the value bitvector when an-
swering each query leading to a 2.71−2.77× performance degra-
dation in read latency. UpBit, however, delivers read latency with
at most 8% overhead which accounts for combining with XOR the
relevant parts of the value and the update bitvectors.

Figure 12a shows the overall workload latency of the previous
experiment as we vary the percentage of updates in the workload.
We see that the update overhead for in-place updates is very low
for a very small number of updates while it drastically increases as
we have more updates in the workload. On other hand, UCB has
small update cost in all cases but the read cost is prohibitively high,
leaving UpBit as the approach that combines low update cost scal-
ing with updates and very low read performance overhead, leading
to faster workload latency against both in-place updates and UCB.

Impact of Deletes. Next, we repeat the above experiment replac-
ing updates with deletes. Figure 12b shows the overall workload
latency of 100k operations where 1%, 5%, or 10% of them are
deletes and the rest lookups. Similarly to the previous experiments,
in-place updates have a drastically increasing overhead as the per-
centage of deletes increases and UCB has very high read overhead.
On the other hand, UpBit has 1.06−1.44× lower workload latency
than in-place deletes by combining low read overhead and very ef-
ficient deletes.

Impact of Inserts. Figure 12c compares in-place updates, UCB,
and UpBit when only inserting new values, using the same setup as
the previous experiments. Since inserts are treated differently than
updates and deletes (using the available padded space of the value
and the update bitvectors to append new values) we expect different
performance as well. Except for in-place updates that suffer as the
percentage of inserts increases, UCB and UpBit perform almost the
same because appending new values in the bitvectors is treated in a
similar way using active words.
Mixed Workload. Figure 13 puts everything together, using a
workload that write requests consist equally of Updates, Deletes
and Inserts (UDI). We vary the aggregate percentage of UDI oper-
ations between 1% and 10% as in our previous experiments. The
impact of updates dominates, and UpBit is the approach with the
fastest workload latency. As the percentage of UDI increases the
performance of in-place degrades, while UCB is slower but main-
tains stable performance. UpBit outperforms both approaches.

We repeat similar experiments varying a number of parameters,
one at a time, to shed light on UpBit’s behavior. We vary the car-
dinality of the indexed column, the data size, and the data distribu-
tion. Lastly, we experiment with a real-life data set which typically
uses bitmap indexing.
Scaling With Cardinality. Domain cardinality is a critical pa-
rameter for bitmap indexes as it defines the number of maintained
bitvectors. In this experiment we study the effect of cardinality.
Figure 14 shows the overall workload latency of 100K queries over
a relation with n= 100M values, which has a domain with d = 1000
unique values. On average each bitvector has now 10× fewer bits
set to one, and as a result, read time is about 10× faster than the
corresponding experiment with d = 100 (Figure 13). The update
cost, however, remains similar to the previous experiment, and the
gain when compared with the in-place updates is much bigger.
Scaling With Data Size. The behavior of all three approaches re-
mains the same when we increase data size. Figure 15 shows the
same experiment with 10K queries, repeated with n = 1B values

 0

 500

 1000

 1500

 2000

 2500

 3000

In-placeUCB UpBit In-placeUCB UpBit In-placeUCB UpBit

1% mix 5% mix 10% mix

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Mix UDI

Figure 13: For general UDI workload, the
overhead of maintaining a gradually less
compressible EB overwhelms UCB, while
UpBit offers faster workload execution than
both approaches.

 0

 50

 100

 150

 200

 250

In-place UCB UpBit In-place UCB UpBit In-place UCB UpBit

1% mix 5% mix 10% mix

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Mix UDI

Figure 14: For a data set with larger domain
cardinality (d = 1000) the update cost is rel-
atively higher, and UpBit has a bigger benefit
over in-place updates for the same number of
updates.

 0

 500

 1000

 1500

 2000

 2500

 3000

In-placeUCB UpBit In-placeUCB UpBit In-placeUCB UpBit

1% mix 5% mix 10% mix

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Mix UDI

Figure 15: When increasing the data set size
(n = 1B, d = 100), the qualitative behavior
of all approaches remain the same. The av-
erage latency increases linearly with the data
set size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

In-place UCB UpBit In-place UCB UpBit In-place UCB UpBit

1% mix 5% mix 10% mix

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Mix UDI

Figure 16: For skewed data (zipfian with S =
1.5), the latency decreases as most bitvectors
are nearly empty. UpBit faces a small over-
head because it has the same distribution of
FPs in all VBs.

 0

 20

 40

 60

 80

 100

 120

 140

In-place UCB UpBit In-place UCB UpBit In-place UCB UpBit

1% mix 5% mix 10% mix

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Mix UDI

Figure 17: UpBit outperforms all other ap-
proaches with real data as well (Berkeley
Earth data set with n = 31M values, and do-
main cardinality d = 114) for a workload
with 1%, 5% or 10% updates.

100

101

102

103

104

105

0.1% 1% 10% 100%

1 M 10 M

100 M

0.5 B

L
a
te

n
c
y
 (

m
s
)

Selectivity

UpBit (range query)
UpBit (equality query)

Scan

Figure 18: Compared with a fast scan, Up-
Bit is faster for range queries with up to 1%
selectivity. Equality queries with similar se-
lectivity are much more efficient because we
avoid the bitwise OR between VBs.

and the domain cardinality as in the initial experiment (d = 100).
Figure 15 looks almost identical to Figure 13. The data size does
not affect the performance trends and the relative behavior of dif-
ferent bitmap index designs. As we index more data over the same
attribute we have more bits per bitvector, maintaining, however, the
same number of value and update bitvectors. As a result, the rel-
ative performance of the different approaches is the same, and the
absolute performance increases linearly with the data set size.

Zipfian Distribution. The distribution of the data affects the be-
havior of all approaches in different ways. In a uniform distribution
all bitvectors get the same number of bits set to one, and as a re-
sult, they have similar compressibility. In distributions with skew,
some bitvectors will contain more ones and others will be almost
empty, leading to very fast querying. Figure 16 shows the over-
all workload latency of an experiment with n = 100M and d = 100,
when the data follow the zipfian distribution (S = 1.5; about 40% of
the items have the two most popular values, and the remaining are
uniform in the domain). Read and update requests are uniformly
distributed over the domain. We observe that all approaches are
faster than the case where the distribution is uniform, because most
bitvectors contain very few bits set to one and are highly compress-
ible. The update cost, however, remains approximately the same as
in the previous case because we still have to decode and then en-
code the update values. As a result, the contribution of the update
cost is now increasing faster as the number of updates increases.
UpBit is slightly slower than the read-optimized bitmap index, be-
cause having bitvectors with drastically different number of bits set
equal to one would require a different granularity of fence pointers
in each value bitvector. This would incur more translation over-
heads since UpBit would have to keep multiple mappings of fence
pointers and positions; one for each value bitvector.

Berkeley Earth Data Set. Finally, we use UpBit to index the
Berkeley earth data set showing significant performance benefits

over both in-place updates and UCB. The data set contains mea-
surements from 1.6 billion temperature reports, and is used for
several climate studies. It contains information about temperature,
date of measurement, and location (longitude and latitude). We use
binning to query based on rounded temperature. Figure 17 shows
that UpBit offers up to 1.34× smaller workload latency than in-
place updates and 2.33× than UCB.

4.3 UpBit vs Modern Fast Scans
Here we compare UpBit with an in-house modern fast scan which

uses tight for-loops, and exploits the available processing in terms
of multi-core and SIMD implementing standard practices from the
literature [23, 31, 37, 38]. Figure 18 shows the latency of a select
operator over a synthetic data set of n = 1B values and d = 1000
when executed with UpBit and the modern scan, while varying the
selectivity on the x-axis between 0.1% and 50%. We observe that
UpBit is 65× faster than the modern scan for selecting 0.1% of the
column. Since we are selecting from a column with one billion
values, 0.1% values still correspond to 106 elements. The speedup
drops sharply to 1.09× for selectivity 1%, and the break-even point
is at 1.52%. When selecting 5% or more of the data UpBit is any-
where between 2.4× and 8.7× slower than the scan. We observe
very similar behavior for different data sizes. Figure 18 also plots a
line corresponding to the UpBit when each read query is an equality
query. In this case, even though the queries have different selectiv-
ity, they all address only one bitvector; for every query the domain
cardinality is different. Similar to what we observed before, UpBit
is 65× faster than the scan for selectivity 0.1%. UpBit’s benefits
remains for 1% selectivity (4.6×) and 5% (1.4×), while for 10%
selectivity UpBit and the scan have virtually the same performance.
For higher selectivity the scan is more efficient: 1.5× for 25% se-
lectivity and 1.99× for 50% selectivity. The difference between a
range and an equality query with the same selectivity is the addi-
tional cost to perform the bitwise OR between the value bitvectors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 20 50 100 200 500 1000

U
p

d
a

te
 L

a
te

n
c
y
 (

m
s
)

R
e

a
d

 L
a

te
n
c
y
 (

m
s
)

Merging threshold

Update
Read

(a) Read and update latency as a function of merg-
ing threshold for a workload with 20% updates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 20 50 100 200 500 1000

U
p

d
a

te
 L

a
te

n
c
y
 (

m
s
)

R
e

a
d

 L
a

te
n
c
y
 (

m
s
)

Merging threshold

Update
Read

(b) Read and update latency as a function of merg-
ing threshold for a workload with 50% updates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 10 100 1000

N
o

rm
a
liz

e
d

 L
a

te
n

c
y

Merging threshold

Workload with 50% updates
Workload with 25% updates

(c) Merging threshold for the overall workload
combining reads and updates.

Figure 19: In workloads that have both read and update queries the optimal threshold of bits set to one before merging is 10. For lower
threshold we merge too often and for higher threshold we disturb the compressibility of the update bitvectors.

4.4 Tuning UpBit
Merging UBs to VBs. As updates are being stored in the update
bitvector they become less compressible, hurting the overall per-
formance. Hence, UpBit merges value and update bitvectors, as
described in Section 3.3. Figures 19a and 19b show the average
update and read latency as we vary the merging threshold on the
x-axis, for two different workloads; Figure 19a corresponds to a
workload with 20% updates and Figure 19b to a workload with
50% updates. Note that the update latency uses the y-axis on the
left hand-side and the read latency the y-axis on the right hand-
side. For both workloads, we observe a small increase in update
time as the merging threshold increases, since the updated bitvec-
tors are becoming less compressible. This trend, however, is almost
hidden because the update latency is dominated by the cost to get
the old value of the updated row (about 93% of the execution time
of an update goes to the get_value operation for our experiment
with domain cardinality d = 100). Using merging threshold equal
to one result in the most expensive read latency, since every read
has to merge all pending updates (a cost more pronounced in Fig-
ure 19b where indeed every read is merging the previous update),
but it drops sharply for threshold between 10 and 20. For higher
threshold values the read cost gradually increases as we operate
on less compressible UBs. In order to make the correct decision
about what threshold value we should choose we look at the over-
all workload latency. Figure 19c shows the workload latency for
both experiments, normalized by the slowest setup; which is for
threshold equal to one. In this case, the expensive read latency
dominates. On the other hand, the normalized workload latency is
15% faster for threshold equal to 10 or 20 for both workloads. For
bigger thresholds the overall workload latency gradually increases,
and eventually reaches 0.92 for merging every 1000 updates. A
merging threshold of 10 updates leads experimentally to the fastest
workload execution, hence, it is used in rest of our experimentation.
Fence Pointers. Fence pointers help in reading only the useful part
of the bitvectors, however, as their granularity becomes finer they
have a substantial space overhead. Here we vary the granularity
of the fence pointers and we show the achieved read latency and
the corresponding size overhead. Figure 20 shows the overall sys-
tem performance as we vary the granularity of fence pointers, in
particular, the number of bits between two consecutive fence point-
ers. In this experiment we have 100 million rows with 100 distinct
values and we show the average latency sustained, with a work-
load having 10% updates and 90% read queries. The x-axis shows
the granularity of the fence pointers, while the last bar shows the
performance of UpBit when no fence pointers are employed. The
solid line shows the space overhead as a ratio of the size of the
overall bitmap index. On the left hand-side we have a fence pointer
after every value effectively paying the price of having the data un-
compressed, leading to very expensive reads, however, as we make
the fence pointers granularity coarser there is a sweet-spot that has
minimum latency and small size overhead. This optimization fits

the test data set (n = 100M, d = 100). For each data set a similar
optimization experiment is executed.

Parallel Bitvector Reading. A key operation to support efficient
updates on bitmap indexes is to be able to efficiently read an arbi-
trary value of the column from the bitmap index in order to decide
which bitvector will need to be updated. Algorithm 3 can be par-
allelized in a way that different bitvectors are accessed simultane-
ously. In addition, with fence pointers we avoid reading unneces-
sary parts of the bitvectors. Figure 21 shows how getting the value
at an arbitrary position scales with number of threads.

UpBit Scaling With Hardware Contexts. In addition to parallel
bitvector reading, UpBit employs multi-threaded execution of read
queries. All approaches decode bitvectors using multiple threads.
Figure 22 shows how the average read and update latency of in-
place updates, UCB, and UpBit scales with the number of threads
for a workload with n = 1B values and domain cardinality d = 100.
The solid lines show the average update time and the dotted lines
show the average read time. Both in-place and UpBit read perfor-
mance scales for up to 8 threads, at which point, the overhead of
on-the-fly merging the value bitvector with the update bitvector for
UpBit dominates the read latency, while UCB cannot take advan-
tage of multiple threads. The update latency for in-place updates
scales for up to 32 threads (which is the number of physical cores of
the machine used). Updates with UpBit scale up to 8 threads. The
update bitvectors are sparse and have up to 10 bits set to one at any
point of time because of the periodic merge with the value bitvec-
tors. Hence, breaking an update bitvector to more than 8 partitions
does not help read performance. On the contrary, it requires more
bookkeeping and increased overhead of result distributing and col-
lecting, leading to an overall increase in update latency.

Tuning Summary. UpBit has three major parameters that are ex-
posed for tuning: (i) the UB-VB merging threshold, (ii) the fence
pointer granularity, and (iii) the level of parallelism used. Statically
defined values deliver robust performance for various workloads.
UpBit, however, allows fine tuning of these knobs in the case of a
workload that may require different tuning.

4.5 The Impact of UpBit Design Elements
In order to more clearly understand the performance benefit of

the two main design elements of UpBit, we evaluate UpBit perfor-
mance when only fence pointers are enabled (UpBit-FP). We mea-
sure the impact of fence pointers with different granularity, when
there is only one update bitvector, similar to the existence bitvector
employed by UCB. When updating this bitvector, instead of decod-
ing the whole bitvector we can use the fence pointers to decode only
the literal word containing the bit we are about to update. That way
we avoid the initial unnecessary decoding, but we may still have to
decode and then encode until the end of the existence bitvector if
the update changes the overall size of the encoding.

Figure 23 shows how UpBit-FP performs in an experiment with

 0

 2

 4

 6

 8

 10

 12

 14

 16

length = 10 0

length = 10 1

length = 10 2

length = 10 3

length = 10 4

length = 10 5

length = 10 6

length = 10 7

no FP

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

L
a
te

n
c
y
 (

m
s
)

S
p
a
c
e
 O

v
e
rh

e
a
d
 (

ra
ti
o
)

UpBit

Space overhead

Figure 20: UpBit’s optimal behavior needs
fence pointers every 103-105 values having
less than 0.5% space overhead.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16

T
im

e
 (

µ
s
)

Number of threads

Get Value

Figure 21: Bitvectors parallel scans scale
with number of threads, leading to 3.9× im-
provement in get_value.

10-1

100

101

102

103

 2 4 8 16 32 64

L
a
te

n
c
y
 (

m
s
)

Number of threads

In-place (Read)

In-place (Update)

UCB (Read)

UCB (Update)

UpBit (Read)

UpBit (Update)

Figure 22: Updates with UpBit are two
orders of magnitude faster than other ap-
proaches and scale for up to 8 threads.

 0

 5

 10

 15

 20

 25

 30

length = 10 0

length = 10 1

length = 10 2

length = 10 3

no FP

10
-3

10
-2

10
-1

10
0

10
1

L
a
te

n
c
y
 (

m
s
)

S
p
a
c
e
 O

v
e
rh

e
a
d
 (

ra
ti
o
)

UpBit-FP

Space overhead

Figure 23: Fence pointers alone offer more
than 2× better performance, having less than
10% space overhead.

 0

 500

 1000

 1500

 2000

 2500

 3000

In-place

UCB
UpBit-FP

UpBit
In-place

UCB
UpBit-FP

UpBit
In-place

UCB
UpBit-FP

UpBit

1% update 5% update 10% update

W
o
rk

lo
a
d
 L

a
te

n
c
y
 (

s
) Read

Update

Figure 24: Both fence pointers, and update
bitvectors contribute towards the overall per-
formance gains of UpBit.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

In-place
UCB

UpBit-FP
UpBit

In-place
UCB

UpBit-FP
UpBit

Compressed Uncompressed

S
p
a
c
e
 O

v
e
rh

e
a
d
 (

M
B

)

Value Bitmaps
Update Bitmaps
Fence Pointers

Existence Bitmap

Figure 25: While UpBit auxiliary structures
add a lot of raw space, when compressed the
space overhead of UpBit is negligible.

data size n = 100M rows, cardinality d = 100, and a workload with
10% updates and 90% read queries. We observe that fence point-
ers can indeed help to decrease average latency by 2.29×, requir-
ing, however, significant space overhead of about 15%. Almost the
same benefit (2.18×), can be achieved for only 4% space overhead.

Full UpBit Design. We now put the whole design together. We re-
peat the same experiment as in Figure 12a but now we also include
UpBit-FP. Figure 24 shows that the performance gains of UpBit
is due to both design decisions of introducing (i) update bitvec-
tors, and (ii) fence pointers. The efficiency of UpBit is the result
of the combination of the two design elements. Fence pointers on
the existence bitvector alone would be less effective because as we
accumulate updates the auxiliary bitvector does not maintain com-
pressibility. On the other hand, a system with update bitvectors like
UpBit needs fence pointers to amortize their cost.

4.6 Read-Update-Memory Tradeoff
UpBit is an updatable bitmap index which makes use of addi-

tional metadata to support fast updates with low overhead on read
queries. Naturally, it is interesting to find out at what cost we
achieve this performance tradeoff. Figures 20 and 23 highlight the
tradeoff between read performance and memory size. In addition,
Figure 25 shows the breakdown of the size of the four update-aware
approaches used in our experimentation. Update bitvectors result
in doubling the uncompressed size of the bitmap index. However,
they can be efficiently compressed because they are sparse. Simi-
larly, the fence pointers add about 0.5% for UpBit, but they result
in more space overhead to have the maximum performance gain
if they are not used with update bitvectors (UpBit-FP). Finally, the
auxiliary bitvector employed in UCB and UpBit-FP approaches has
negligible size. UpBit maintains low space overhead by period-
ically merging update bitvectors with value bitvectors. The high
compressibility of the sparse update bitvectors due to efficient en-
coding, allows for low update and merging overhead.

We further analyze the average latency of UpBit as we vary
the granularity of fence pointers separately for read and update
queries, for an experiment with n = 100M values and domain car-
dinality d = 100. In particular, Figure 26 shows the average read
latency, update latency, and memory overhead when we vary the

fence pointers granularity between one for every single value, and
one every 107 values, which is virtually identical with what we ob-
serve when we have no fence pointers. Figure 26 shows a triangular
tradeoff between read latency, update latency, and memory over-
head. For very dense fence pointers both read and update latency
are high and, of course, memory overhead is very high, resulting in
no benefits. As we make the fence pointers sparser we observe that
both read and update latency drop. The minimum read latency is
achieved when we store a fence pointer every 105 values, and the
minimum update latency when we store a fence pointer every 103

values. As we further decrease the granularity of fence pointers up-
dates become very expensive as we have to decode larger parts of
each bitvector. In summary, we want to minimize all three values:
read latency, update latency, and memory overhead. If we have
hard requirements (e.g., in read latency or memory size) we will
have a specific range of values that we can select. In any case, we
can select a “sweet spot” corresponding to the requirements of the
application at hand. For example, depending on how many update
and read queries comprise the workload, we select the appropriate
fence pointer granularity to minimize the overall workload latency.

4.7 UpBit on TPC-H
We now continue to demonstrate that UpBit is effective on full

queries with the standard TPC-H benchmark (scale factor 100). We
integrate UpBit in an in-house column-store prototype system that
supports full select-project-join queries. We experiment using as
select operator, either UpBit or an optimized scan. The work-
load consists of a variation of TPC-H Q6; the selectivity of the
l_quantity clause is varied from 2% to 100%, and we index on
the l_quantity column. Q6 has two more select predicates, hence
the overall query selectivity is between 0.08% to 3.9%, accordingly
(more details about query generation can be found in Appendix B).

Figure 27 shows that UpBit achieves significant benefits com-
pared to the scan-based execution. For query selectivity between
0.08% and 2.4%, (indexed column selectivity 2%−60%), UpBit is
up to 6× faster, while for higher query selectivity (2.4%−3.9%, in-
dexed column selectivity > 60%), the scan approach is up to 1.4×
faster. Using UpBit for full SQL queries on larger data sets results
in similar behavior as observed earlier (e.g., Figure 18).

 0

 5

 10

 15

 20

 25

 30

 35

length = 10 0

length = 10 1

length = 10 2

length = 10 3

length = 10 4

length = 10 5

length = 10 6

length = 10 7

no FP

10
-7

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

L
a

te
n

c
y
 (

m
s
)

S
p

a
c
e
 O

v
e

rh
e
a

d
 (

ra
ti
o

)Read Update Memory

Figure 26: In order to decide fence pointer granularity we analyze
the expected workload to get the best combination of performance
and memory overhead.

 0

 2

 4

 6

 8

 10

0% 20% 40% 60% 80% 100%

T
P

C
-H

 Q
6

 L
a

te
n

c
y
 (

s
)

Selectivity of the quantity clause of TPC-H Query 6

UpBit (on quantity)
Scan

Figure 27: UpBit achieves significant benefits up to 6× compared to
the scan-based execution of TPC-H Q6, when varying the selectivity
of the l_quantity clause.

4.8 Discussion
Designing Bitmap Indexes. The analysis of UpBit leads to three
core observations about designing bitmap indexes. First, introduc-
ing fence pointers mitigates one of the most important costs of
bitmap indexes when updating: decoding and re-encoding bitvec-
tors. In addition, distributing the cost of updating to several highly
compressible update bitvectors allows for (i) very efficient updates,
(ii) efficient on-the-fly merges during reads, and (iii) query-driven
absorption of the updates. Finally, both fence pointers and update
bitvectors increase the memory requirement of the index by a small
fraction, however, we show that we can keep the memory overhead
low and that we can fine-tune it based on the expected workload.
Protecting Updates. While in this paper we focus on serial exe-
cution, UpBit is ideally situated to absorb concurrent updates com-
pared to past work. The introduction of one update bitvector per
value of the domain means that UpBit can operate in parallel for
queries that update or read different values. Locking can hap-
pen in a fine grained way at the granularity of each individual
value/update bitvector, providing maximum flexibility for concur-
rency compared to state-of-the-art techniques that essentially have
a single point of access for all queries (e.g., either in-place updates
or a single existence bitvector).

5. RELATED WORK
Updating Bitmap Indexes. The state of the art in update-friendly
bitmap indexes is Update Conscious Bitmaps (UCB) [8]. USB sup-
ports updates by using an existence bitvector (EB) [21] which is
updated when a row is deleted. Updates in this context are handled
by a delete-then-insert operation. In order to efficiently support in-
serts UCB bitvectors are expanded by a single synthetic 0-fill-pad
fill word which can represent very large bitvectors comprised only
of zeros. In an event of an insert, or of a delete-then-insert, the new
values are stored in the additional words. UCB, however, needs to
store the mapping information when physical rows get invalidated.
In addition to that, EB becomes less compressible as updates arrive
because more bits are set to one, and there are fewer opportunities
for space efficient encoding. UCB offers very low update times
for a small number of updates, however, both update time and read
time increases as updates accumulate.

In this paper we address this limitation by introducing UpBit
with two key design elements. First, UpBit employs update bitvec-
tors (one per value of the domain) to distribute the update burden
from the single bitvector that UCB employs, the existence bitvec-
tor. The difference now is that the auxiliary bitvectors can maintain
their compressibility which is the main cost factor when query-
ing using a bitmap index. The way to maintain auxiliary bitvector
compressibility is by merging the update bitvectors and the value
bitvectors based on a threshold. In particular, when a performance-
driven threshold of bits set in an update bitvector is reached, it is

marked for merging in the next read query. Then, in the next read
query for the given value the update bitvector is merged back to the
value bitvector in a query-driven way. This design was not practical
with UCB because, contrary to UpBit, a query-driven merge would
result into updating all bitvectors for some read queries. Second,
UpBit introduces fence pointers in the update bitvectors to allow for
efficient reads of arbitrary positions of each bitvector without de-
coding them entirely. This design reduces unnecessary decodings,
and offers both better update time and query time when compared
with the state of the art.

HICAMP Bitmap Index. HICAMP bitmap index [29] uses the
DAG structure of HICAMP memory prototype [12]. HICAMP
(Hierarchical Immutable Content-Addressable Memory Processor)
offers architectural support for efficient concurrency safe shared
structured data accesses. The HICAMP bitmap index uses HI-
CAMP memory in order to efficiently deduplicate bitvectors. When
any part of a bitvector is updated the memory management unit of
HICAMP memory delivers efficient deduplication, in order to offer
both space and update optimizations. HICAMP bitmap can be up-
dated with O(log(n)) cost, and the read cost is O(m · log(n)) where
m is related to the number of non-zero words of the bitvector.

HICAMP bitmap index, orthogonally to UCB and UpBit, offers
efficient concurrency-safe bitmap indexing with aggressive dedu-
plication building directly on top of the HICAMP prototype mem-
ory which is not yet available outside hardware simulation. UpBit
can take advantage of the deduplication support of HICAMP mem-
ory to store for free most of the update bitvectors and potentially
absorb more updates before merging update and value bitvectors.

6. CONCLUSIONS
In this paper, we show that state-of-the-art bitmap indexes suf-

fer in terms of update performance, and they do not scale with the
number of updates. We introduce UpBit, a new bitmap index which
allows for both efficient reads and writes and scales with the num-
ber of updates without hurting read performance.

Instead of updating bitvectors directly, when an update query
arrives, UpBit buffers the update allowing multiple updates at the
same time while supporting fast response times for read queries,
having access to the latest updates with negligible overhead. UpBit
uses dedicated update bitvectors for every value of the domain to
buffer inserts, deletes and updates. At the same time it uses fence
pointers across these bitvectors to allow for fast navigation by mini-
mizing decoding. We demonstrate that UpBit achieves faster work-
load latency compared with both state-of-the-art read and update-
optimized bitmap indexes, combining the best of both worlds.

Acknowledgments. We thank the reviewers and the DASlab group
for their valuable feedback. This work is supported by SNSF Grant
No. P2ELP2_158936 and by NSF Grant No. IIS-1452595.

7. REFERENCES
[1] G. Antoshenkov. Byte-aligned Bitmap Compression. In

Proceedings of the Conference on Data Compression (DCC),
pages 476–476, 1995.

[2] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and
R. Stoica. MaSM: Efficient Online Updates in Data
Warehouses. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
865–876, 2011.

[3] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and
R. Stoica. Online Updates on Data Warehouses via Judicious
Use of Solid-State Storage. ACM Transactions on Database
Systems (TODS), 40(1), 2015.

[4] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica,
S. Idreos, A. Ailamaki, and M. Callaghan. Designing Access
Methods: The RUM Conjecture. In Proceedings of the
International Conference on Extending Database Technology
(EDBT), pages 461–466, 2016.

[5] J. Becla and K.-T. Lim. Report from the first workshop on
extremely large databases (XLDB 2007). Data Science
Journal, 7, feb 2008.

[6] Berkeley. Berkeley Earth Data.
http://berkeleyearth.org/data/.

[7] M. Cain and K. Milligan. IBM DB2 for i indexing methods
and strategies. IBM White Paper, 2011.

[8] G. Canahuate, M. Gibas, and H. Ferhatosmanoglu. Update
Conscious Bitmap Indices. In Proceedings of the
International Conference on Scientific and Statistical
Database Management (SSDBM), pages 15–25, 2007.

[9] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and
evaluation. ACM SIGMOD Record, 27(2):355–366, 1998.

[10] C.-Y. Chan and Y. E. Ioannidis. An efficient bitmap encoding
scheme for selection queries. ACM SIGMOD Record,
28(2):215–226, 1999.

[11] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM SIGMOD
Record, 26(1):65–74, 1997.

[12] D. R. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P.
Stevenson, and O. Azizi. HICAMP: Architectural Support
for Efficient Concurrency-safe Shared Structured Data
Access. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 287–300, 2012.

[13] A. Colantonio and R. Di Pietro. Concise: Compressed ’N’
Composable Integer Set. Information Processing Letters,
110(16):644–650, 2010.

[14] F. Deliège and T. B. Pedersen. Position list word aligned
hybrid: optimizing space and performance for compressed
bitmaps. In Proceedings of the International Conference on
Extending Database Technology (EDBT), pages 228–239,
2010.

[15] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri.
Indexing million of packets per second using GPUs. In
Proceedings of the Conference on Internet Measurement
Conference (IMC), pages 327–332, 2013.

[16] F. Fusco, M. Vlachos, and M. P. Stoecklin. Real-time
creation of bitmap indexes on streaming network data. The
VLDB Journal, 21(3):287–307, 2011.

[17] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal, S. Bhansali,
M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarev, S. Venkataraman, and D. Agrawal. Mesa:

Geo-replicated, Near Real-time, Scalable Data Warehousing.
Proc. VLDB Endow., 7(12):1259–1270, 2014.

[18] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A Tunable
Compression Framework for Bitmap Indices. In Proceedings
of the IEEE International Conference on Data Engineering
(ICDE), pages 484–495, 2014.

[19] R. MacNicol and B. French. Sybase IQ Multiplex - Designed
For Analytics. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
1227–1230, 2004.

[20] P. E. O’Neil. Model 204 Architecture and Performance. In
Proceedings of the International Workshop on High
Performance Transaction Systems (HPTS), pages 40–59,
1987.

[21] P. E. O’Neil and D. Quass. Improved query performance with
variant indexes. ACM SIGMOD Record, 26(2):38–49, 1997.

[22] Oracle. Oracle Database 12c for Data Warehousing and Big
Data. Oracle White Paper, 2013.

[23] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman.
Main-memory scan sharing for multi-core CPUs.
Proceedings of the VLDB Endowment, 1(1):610–621, 2008.

[24] P. Russom. High-Performance Data Warehousing. TDWI
Best Practices Report, 2012.

[25] V. Sharma. Bitmap Index vs. B-tree Index: Which and
When? Oracle White Paper, 2005.

[26] K. Stockinger. Bitmap Indices for Speeding Up
High-Dimensional Data Analysis. In Proceedings of the
International Conference on Database and Expert Systems
Applications (DEXA), pages 881–890, 2002.

[27] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-Store: A Column-oriented DBMS. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 553–564, 2005.

[28] TPC. Specification of TPC-H benchmark.
http://www.tpc.org/tpch/.

[29] B. Wang, H. Litz, and D. R. Cheriton. HICAMP Bitmap:
Space-Efficient Updatable Bitmap Index for In-Memory
Databases. In Proceedings of the International Workshop on
Data Management on New Hardware (DAMON), pages 1–7,
2014.

[30] C. White. Intelligent business strategies: Real-time data
warehousing heats up. DM Review, 2002.

[31] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-Scan: Ultra Fast in-Memory Table
Scan using on-Chip Vector Processing Units. Proceedings of
the VLDB Endowment, 2(1):385–394, 2009.

[32] H. K. T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong.
Bit Transposed Files. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
448–457, 1985.

[33] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs,
E. Cormier-Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann,
W. Koegler, J. Lauret, J. Meredith, P. Messmer, E. J. Otoo,
V. Perevoztchikov, A. Poskanzer, O. Rübel, A. Shoshani,
A. Sim, K. Stockinger, G. Weber, and W.-M. Zhang. FastBit:
interactively searching massive data. Journal of Physics:
Conference Series, 180(1):012053, 2009.

[34] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing Bitmap
Indices with Efficient Compression. ACM Transactions on
Database Systems (TODS), 31(1):1–38, 2006.

[35] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes on
Design and Implementation of Compressed Bit Vectors.
Technical report, Lawrence Berkeley National Laboratory,
2001.

[36] M.-C. Wu and A. P. Buchmann. Encoded Bitmap Indexing
for Data Warehouses. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE),
pages 220–230, 1998.

[37] J. Zhou and K. A. Ross. Implementing database operations
using SIMD instructions. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 145–156, 2002.

[38] M. Zukowski, P. A. Boncz, and S. Héman. MonetDB/X100 -
A DBMS In The CPU Cache. IEEE Data Engineering
Bulletin, 28(2):17–22, 2005.

APPENDIX
A. IMPLEMENTATION

UpBit is implemented as a standalone prototype access method
in C++. A key component for efficient bitmap indexing is the de-
sign of bitvectors. For this, we built on top of the state-of-the-
art bitmap representation when it comes to read performance using
the bitvectors implementation of FastBit [33]. We have modified
FastBit to support existence bitvectors (to implement UCB), update
bitvectors, fence pointers, and multi-threading.

A key challenge when implementing UpBit is how to find the old
value of a given row (get_value) in order to set the correspond-
ing bit in the update bitvector. We parallelize this process using
C++11 threads. We take advantage of the available hardware par-
allelism (number of cores) in order to concurrently search all value
bitvectors for the given row. Fence pointers are particularly helpful
because we do not need to decode the bitvectors in their entirety.

A.1 Integration
UpBit can be easily integrated to a full database system. Up-

Bit exposes a traditional secondary index interface, allowing for
initial build, point query, range query, delete, update, and insert
operations. The space management is currently independent from
a database system since it is more efficient to store the encoded
bitvectors contiguously. In our prototype column-store implemen-

tation integrating UpBit has minima overhead, since it can directly
use a column as input and can also separately manage the storage
used for storing the index durably. Finally, we augment the im-
plementation of UpBit with a method to convert the final bitvector
after querying a column using the index to a list of rowIDs.

B. TPC-H QUERY 6
Here we discuss in detail how we generated the TPC-H queries

used in the experiment presented in Section 4.7. In this experiment
we use a modified TPC-H Query 6, where we vary the selectiv-
ity. The SQL code of Q6 is shown in Listing 1. The value of the
parameter DATE is the first of January of a randomly selected year
within [1993,1997]. The dates of the TPCH data span the year
1992 to 1998 for a total of 7 years. The parameter DISCOUNT is
randomly selected within [0.02,0.09], where the possible values
are distributed in the range [0,0.1], in increments of 0.01, hav-
ing, as a result, 11 evenly distributed distinct values. Finally, the
value of the parameter QUANTITY is either 24 or 25, while all pos-
sible values of the domain are the integers in the range [1,50], dis-
tributed uniformly. As a result, an average Query 6 selects the
rows corresponding to 1 of the 7 years, 3 of 11 possible values
of discount, and 24 or 25 of 50 possible values of quantity, lead-
ing to selectivity 1

7 ·
3
11 ·

24.5
50 ≈ 1.91%. In our experimentation

(Figure 27) we index the l_quantity column and we vary the se-
lectivity of on this column from 2% (l_quantity < 1) to 100%
(l_quantity < 50). As a result, the overall Q6 selectivity varies
between 1

7 ·
3
11 ·

1
50 ≈ 0.08% and 1

7 ·
3
11 ·

50
50 ≈ 3.9%.

Listing 1: TPCH Q6
SELECT

sum (l _ e x t e n d e d p r i c e ∗ l _ d i s c o u n t)
as r e v e n u e

FROM
l i n e i t e m

WHERE
l _ s h i p d a t e >= date ’ [DATE] ’

AND l _ s h i p d a t e <
date ’ [DATE] ’ + i n t e r v a l ’ 1 ’ year

AND l _ d i s c o u n t between
[DISCOUNT] − 0 . 0 1 AND [DISCOUNT] + 0 . 0 1

AND l _ q u a n t i t y < [QUANTITY] ;

