
The VLDB Journal (2020) 29:569–591
https://doi.org/10.1007/s00778-019-00580-x

SPEC IAL ISSUE PAPER

Adaptive partitioning and indexing for in situ query processing

Matthaios Olma1 ·Manos Karpathiotakis2 · Ioannis Alagiannis3 ·Manos Athanassoulis4 · Anastasia Ailamaki1

Received: 1 December 2018 / Revised: 1 July 2019 / Accepted: 5 October 2019 / Published online: 15 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The constant flux of data and queries alike has been pushing the boundaries of data analysis systems. The increasing size of
raw data files has made data loading an expensive operation that delays the data-to-insight time. To alleviate the loading cost,
in situ query processing systems operate directly over raw data and offer instant access to data. At the same time, analytical
workloads have increasing number of queries. Typically, each query focuses on a constantly shifting—yet small—range. As a
result, minimizing the workload latency requires the benefits of indexing in in situ query processing. In this paper, we present
an online partitioning and indexing scheme, along with a partitioning and indexing tuner tailored for in situ querying engines.
The proposed system design improves query execution time by taking into account user query patterns, to (i) partition raw
data files logically and (ii) build lightweight partition-specific indexes for each partition. We build an in situ query engine
called Slalom to showcase the impact of our design. Slalom employs adaptive partitioning and builds non-obtrusive indexes
in different partitions on-the-fly based on lightweight query access pattern monitoring. As a result of its lightweight nature,
Slalom achieves efficient query processing over raw data with minimal memory consumption. Our experimentation with
both microbenchmarks and real-life workloads shows that Slalom outperforms state-of-the-art in situ engines and achieves
comparable query response times with fully indexed DBMS, offering lower cumulative query execution times for query
workloads with increasing size and unpredictable access patterns.

Keywords Online tuning · Adaptive indexing · Logical partitioning

1 Introduction

Data-intensive applications in various domains generate and
collectmassive amounts of data at a rapid pace. New research
fields and applications (e.g., network monitoring, sensor
data management, clinical studies, etc.) emerge and require

B Matthaios Olma
matthaios.olma@epfl.ch

Manos Karpathiotakis
manos@fb.com

Ioannis Alagiannis
ioalagia@microsoft.com

Manos Athanassoulis
mathan@bu.edu

Anastasia Ailamaki
anastasia.ailamaki@epfl.ch

1 EPFL, Lausanne, Switzerland

2 Facebook, London, UK

3 Microsoft, Redmond, WA, USA

4 Boston University, Boston, MA, USA

broader data analysis functionality to rapidly gain deeper
insights from the available data. In practice, analyzing such
datasets become costlier as their size grows.

Bigdata, small queriesThe trend of exponential data growth
due to intense data generation and data collection is expected
to persist. However, recent studies of the data analysis work-
loads show that typically only a small subset of the data is
relevant and ultimately used by analytical and/or exploratory
workloads [1,17]. In addition, modern business and scientific
applications require interactive data access, which is char-
acterized by no or little a priori workload knowledge and
constant workload shifting both in terms of the attributes
projected and the ranges selected from the dataset.

The cost of loading, indexing, and tuning Traditional data
management systems (DBMS) require the costly steps of
data loading, physical design decisions, and then index build-
ing in order to offer interactive access over large datasets.
Given the data sizes involved, any transformation, copy-
ing, and preparation steps over the data introduce substantial
delays before the data can be utilized, queried, and provide
useful insights [2,5,36]. The lack of a priori knowledge of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00580-x&domain=pdf
http://orcid.org/0000-0002-7917-8658


570 M. Olma et al.

Fig. 1 Ideally, in situ data analysis should be able to retrieve only the
relevant data for each query after the initial table scan (ideal—dotted
line). In practice, in situ query processing avoids the costly phase of data
loading (dashed line); however, as the number of the queries increases,
the initial investment for full index on a DBMS pays off (the dashed
line meets the gray line)

the workload makes the physical design decisions virtually
impossible because cost-based advisors rely heavily on past
or sample workload knowledge [3,16,22,29,68]. The work-
load shifts observed in the interactive setting of exploratory
workloads can nullify investments toward indexing and other
auxiliary data structures, since frequently, they depend on the
actual data values and the knowledge generated by the ongo-
ing analysis.

Querying raw data files is not enough Recent efforts opt
to query directly raw files [2,5,12,18,31,42] to reduce the
data-to-insight cost. These in situ systems avoid the costly
initial data loading step and allow the execution of declarative
queries over external files without duplicating or “locking”
data in a proprietary database format. Further, they concen-
trate on reducing costs associated with raw data accesses
(e.g., parsing and converting data fields) [5,18,42]. Finally,
although recent scientific datamanagement approaches index
raw data files using file-embedded indexes, they do it in a
workload-oblivious manner, or requiring full a priori work-
load knowledge [12,67]. Hence, they bring back the cost of
full index building, in the raw data querying paradigm, negat-
ing part of the benefits of avoiding data loading.

Figure 1 shows what the ideal in situ query performance
should be (dotted line). After the unavoidable first table scan,
ideally, in situ queries need to access only data relevant to
the currently executed query. The figure also visualizes the
benefits of state-of-the-art in situ query processing when
compared with a full DBMS. The y-axis shows the cumula-
tive query latency, for an increasing number of queries with
fixed selectivity on the x-axis. By avoiding the costly data
loading phase, the in situ query execution system (dashed
line) can start answering queries very quickly. On the other
hand, when a DBMS makes an additional investment on full
DBMS indexing (solid gray line), it initially increases signif-
icantly the data-to-query latency; however, later it pays off
as the number of queries issued over the same (raw) dataset
increases. Eventually, the cumulative query latency for an in
situ approach becomes larger than the latency of a DBMS
equipped with indexing. When operating over raw data, ide-

ally, we want after the initial—unavoidable—table scan to
collect enough metadata to allow future queries to access
only the useful part of the dataset.

Adaptive partitioning and fine-grained indexing We use
the first table scan to generate partitioning and lightweight
indexing hints which are further refined by the data accesses
of (only a few) subconsequent queries.During this refinement
process, the dataset is partially indexed in a dynamic fash-
ion adapting to three key workload characteristics: (i) data
distribution, (ii) query type (e.g., point query, range query),
and (iii) projected attributes. Workload shifts lead to vary-
ing selected value ranges, selectivity, which dataset areas are
relevant for a query, and projected attributes.

This paper proposes an online partitioning and indexing
tuner for in situ query processing which, when plugged into a
raw data query engine, offers fast queries over raw data files.
The tuner reduces data access cost by: (i) logically partition-
ing a raw dataset to break it into smaller manageable chunks
without physical restructuring and (ii) choosing appropri-
ate indexing strategies over each logical partition to provide
efficient data access. The tuner adapts the partitioning and
indexing scheme as a side effect of executing the query
workload. It continuously collects information regarding the
values and access frequency of queried attributes at runtime.
Based on this information, it uses a randomized online algo-
rithm to define logical partitions. For each logical partition,
the tuner estimates the cost-benefit of building partition-local
index structures considering both approximate membership
indexing (i.e., Bloom filters and zonemaps) and full indexing
(i.e., bitmaps and B+ trees). By allowing fine-grained index-
ing decisions, our proposal defers the decision of the index
shape to the level of each partition rather than the overall rela-
tion. This has two positive side effects. First, there is no costly
indexing investment that might be unnecessary. Second, any
indexing effort is tailored to the needs of data accesses on the
corresponding range of the dataset.

Efficient in situ query processing with SlalomWe integrate
our online partitioning and indexing tuner to an in situ query
processing prototype system, Slalom, which combines the
tuner with a state-of-the-art raw data query executor. Slalom
is further augmented with index structures and uses the tuner
to decide how to partition and which index or indexes to
build for each partition. In particular, Slalom logically splits
raw data into partitions and selects which fine-grained index
to build, per partition based on how “hot” (i.e., frequently
accessed) each partition is, and what types of queries target
each partition. Furthermore, Slalom populates binary caches
(of data converted from raw to binary) to further boost per-
formance. Slalom adapts to workload shifts by adjusting the
current partitioning and indexing scheme using a randomized
cost-based decision algorithm. Overall, the logical partitions
and the indexes that Slalombuilds over each partition provide

123



Adaptive partitioning and indexing for in situ query processing 571

performance enhancements without requiring expensive full
data indexing nor data file reorganization, all while adapting
to workload changes.

Contributions This paper makes the following contribu-
tions:

– We present a logical partitioning scheme of raw data files
that enables fine-grained indexing decisions at the level
of each partition. As a result, lightweight per-partition
indexing provides near-optimal data access.

– The lightweight partitioning allows our approach to
maintain the benefits of in situ approaches. In addition,
the granular way of indexing (i) brings the benefit of
indexing to in situ query processing, (ii) having low index
building cost, and (iii) small memory footprint. These
benefits are highlighted as the partitioning and indexing
decisions are refined on-the-fly using an online random-
ized algorithm.

– We enable both in-place and append-like updates for in
situ query processing. We exploit specialized hardware
(GPUs andCRCchecksumunits) to reduce update recog-
nition cost and minimize changes to partitioning and
indexing, overall minimizing the query execution over-
head in the presence of updates.

– We integrate our partitioning and indexing tuner into our
prototype state-of-the-art in situ query engine Slalom.
We use synthetic and real-life workloads to compare the
query latency of (i) Slalom, (ii) a traditional DBMS, (iii)
a state-of-the-art in situ query processing engine, and (iv)
adaptive indexing (cracking). Our experiments show that,
even when excluding the data loading cost, Slalom offers
the fastest cumulative query latency. In particular, Slalom
outperforms (a) state-of-the-art disk-based approaches
byoneorder ofmagnitude, (b) state-of-the-art in-memory
approaches by 3.7× (with 2.45× smaller memory foot-
print), and (c) adaptive indexing by 19% (having 1.93×
smaller memory footprint). Finally, we examine the per-
formance of Slalom in the presence of both in-place and
append-like updates.

To our knowledge, Slalom is the first approach that proposes
the use of a randomized online algorithm to select which
workload-tailored index structures should be built per par-
tition of the data file. This approach reduces index building
time and provides minimal decision time.

Outline The remainder of this paper is organized as follows:
Sect. 2 provides an overview of related work. Sect. 3 presents
the architecture of Slalomand gives an overviewof its design.
Section 4 presents the online tuner and describes its parti-
tioning and indexing cost models. Section 4.3 presents the
techniques enabling efficient data updates for in situ query

processing. We experimentally demonstrate the benefits of
Slalom in Sect. 5, and we conclude in Sect. 6.

2 Related work

In recent years, many research efforts re-design the tradi-
tional data management architecture to address the chal-
lenges and opportunities associated with dynamic workloads
and interactive data access. In this section, we discuss
research approaches related to Slalom and highlight how
Slalom pushes the state of the art.

Queries over raw data Data loading accounts for a large
fraction of overall workload execution time in both the
DBMS and Hadoop ecosystems [31]. NoDB treats raw data
files as native storage of the DBMS and introduces auxil-
iary data structures (positional maps and caches) to reduce
the expensive parsing and tokenization costs of raw data
access [5]. ViDa introduces code-generated access paths and
data pipeline to adapt the query engine to the underlying
data formats and layouts, and to the incoming queries [40–
42]. Data Vaults [36,38] and SDS/Q [12] perform analysis
over scientific array-basedfile formats. SCANRAW[18] uses
parallelism tomask the increasedCPUprocessing costs asso-
ciated with raw data accesses during in situ data processing.
In situDBMSapproaches either rely on accessing the data via
full table scans or require a priori workload knowledge and
enough idle time to create the proper indexes. The mech-
anisms of Slalom are orthogonal to these systems and can
augment their design by enabling data skipping and indexed
accesseswhile constantly adapting its indexing and partition-
ing schemes to queries.

Hadoop-based systems such as Hive [64] can access raw
data stored in HDFS. While such frameworks internally
translate queries to MapReduce jobs, other systems follow a
more traditional massive parallel processing (MPP) architec-
ture to offer SQL-on-Hadoop functionality [45,49]. Hybrid
approaches such as invisible loading [2] and polybase [21]
propose co-existence of a DBMS and a Hadoop cluster,
transferring data between the two when needed. SQL Server
PDW [24] and AsterixDB [6] propose indexes for data stored
in HDFS and, in general, for external data. The key tech-
niques of Slalom can also be applied in a Hadoop-based
environment. SQL Server PDW and AsterixDB build sec-
ondary indexes over HDFS files. The techniques used by
Slalom, on the other hand, improve system scalability by
reducing the size of the index and building memory efficient
indexes per file partition.

On the other side of raw data querying, instant Load-
ing [51] parallelizes the loading process for main-memory
DBMS, offering bulk loading at near-memory-bandwidth
speed. Similarly to instant Loading, Slalom uses data parsing

123



572 M. Olma et al.

with hardware support for efficient raw data access. Instead
of loading all data, however, Slalom exploits workload local-
ity to adaptively create a fine-grained indexing scheme over
raw data and gradually reduce I/O and access costs, all while
operating within a modest memory budget.

Database partitioningA table can be physically subdivided
into smaller disjoint sets of tuples (partitions), allowing tables
to be stored, managed, and accessed at a finer level of gran-
ularity [46].

Offline partitioning approaches [3,27,53,68] present phys-
ical design tools that automatically select the proper partition
configuration for a given workload to improve performance.
Online partitioning [37] monitors and periodically adapts the
database partitions to fit the observed workload. Furtado et
al. [23] combine physical and virtual partitioning to frag-
ment and dynamically tune partition sizes for flexibility in
intra-query parallelism. Shinobi [66] clusters hot data in hor-
izontal partitions which it then indexes, while Sun et al. [63]
use a bottom-up clustering framework to offer an approxi-
mate solution for the partition identification problem.

Physical reorganization, however, is not suitable for data
file repositories due to its high cost and the immutable nature
of the files. Slalom presents a non-intrusive, flexible par-
titioning scheme that creates logical horizontal partitions
by exploiting data skew. Additionally, Slalom continuously
refines its partitions during query processing without requir-
ing a priori workload knowledge.

Database indexing There is a vast collection of index
structures with different capabilities, performance, and ini-
tialization/maintenance overheads [9,10,35,44]. This paper
uses representative index structures from the two categories:
(i) value-position and (ii) value-existence indexes, that offer
good indexing for point and range queries. Value-position
indexes include the B+ tree and hash indexes and their varia-
tions [8]. Common value-existence indexes are Bloom filters
[13], bitmap indexes [11,52,61], and zonemaps [50]. They are
lightweight and can provide the information whether a value
is present in a given dataset. Value-existence indexes are
frequently used in scientific workloads [19,62,67]. Slalom
builds main-memory auxiliary structures (i) rapidly, (ii) with
small footprint, and (iii) without a priori workload knowl-
edge. Thatway, it enables low data-to-insight latencywithout
hurting the performance of long-running workloads, for
which indexing is typically more useful.

Online indexing Physical design decisions made before
workload execution can also be periodically re-evaluated.
COLT [59] continuously monitors the workload and period-
ically creates new indexes and/or drops unused ones. COLT
adds overhead on query execution because it obtains cost esti-
mations from the optimizer at runtime. A “lighter” approach
requiring fewer calls to the optimizer has also been proposed
in recent literature [15]. Slalom also focuses on the problem

of selecting an effective set of indexes and builds indexes
on partition granularity. It populates indexes during query
execution in a pipelined fashion instead of triggering a stand-
alone index building phase. Slalom aims tominimize the cost
of index construction decisions and the complexity of the
costing algorithm.

Adaptive indexing In order to avoid the full cost of indexing
before workload execution, adaptive indexing incrementally
refines indexes during query processing. In the context of
in-memory column stores, database cracking approaches
[25,32–34,56] create a duplicate of the indexed column and
incrementally sort it according to the incoming workload,
thus reducing memory access. HAIL proposes an adaptive
indexing approach for MapReduce systems [57]. ARF is
an adaptive value-existence index similar to Bloom filters,
yet useful for range queries [7]. Similarly to adaptive index-
ing, Slalom does not index data upfront and builds indexes
during query processing and continuously adapts to thework-
load characteristics. However, contrary to adaptive indexing
that duplicates the whole indexed attribute upfront, Slalom’s
gradual index building allows its indexes to have small mem-
ory footprint by indexing both the targeted value ranges and
the targeted attributes.

3 The SLALOM system

Slalom uses adaptive partitioning and indexing to provide
inexpensive index support for in situ query processing while
adapting to workload changes. Slalom accelerates query pro-
cessing by skipping data and minimizes data access cost
when this access is unavoidable. At the same time, it operates
directly on the original data files without need for physical
restructuring (i.e., copying, sorting).

Slalom incorporates state-of-the-art in situ querying tech-
niques and enhances them with logical partitioning and
fine-grained indexing, thereby reducing the amounts of
accessed data. To remain effective despite workload shifts,
Slalom introduces an online partitioning and indexing tuner,
which calibrates and refines logical partitions and secondary
indexes based on data and query statistics. Slalom treats data
files as relational tables to facilitate the processing of read-
only and append-like workloads. The rest of this section
focuses on the architecture and implementation of Slalom.

3.1 Architecture

Figure 2 presents the architecture of Slalom. Slalom com-
bines an online partitioning and indexing tuner with a query
executor featuring in situ querying techniques. The core com-
ponents of the tuner are the Partition Manager, which is
responsible for creating logical partitions over the data files,

123



Adaptive partitioning and indexing for in situ query processing 573

Fig. 2 The architecture of Slalom

and the Index Manager, which is responsible for creating
and maintaining indexes over partitions. The tuner collects
statistics regarding the data and query access patterns and
stores them in the Statistics Store. Based on those statis-
tics, the Structure Refiner evaluates the potential benefits
of alternative configurations of partitions and indexes. Fur-
thermore, Slalom uses in situ querying techniques to access
data. Specifically, Slalom uses auxiliary structures (i.e., posi-
tional maps and caches) which minimize raw data access
cost. During query processing, the Query Executor utilizes
the available data access paths and orchestrates the execu-
tion of the other components. Finally, the Update Monitor
examines whether a file has been modified and adjusts the
data structures of Slalom accordingly.

Slalom scope The techniques of Slalom are applicable to any
tabular dataset. Specifically, the scan operator of Slalom uses
a different specialized parser for each underlying data format.
This work concentrates on queries over delimiter-separated
textualCSVfiles, becauseCSV is themost popular structured
textual file format. Still, the yellow- and blue-coded compo-
nents of Fig. 2 are applicable over binary files, which are the
typical backend of databases and are also frequently used
in scientific applications (e.g., high-energy physics, DNA

sequencing, GIS). Regarding query types, Slalom concen-
trates on efficient access of different rawdatafiles and enables
queries containing filters on different attributes. Slalom, in
its current format, does not support arbitrary joins and nested
SQL queries. However, we assume that any query involving
nested queries or joins can be flattened and Slalom can per-
form filtering over the resulting underlying data. We discuss
further Slalom’s extensibility in Sect. 3.4.

Reducing data access cost Slalom launches queries directly
over the original raw data files, without altering or dupli-
cating the files by ingesting them in a DBMS. That way,
Slalom avoids the initialization cost induced by loading and
offers instant data access. Similarly to state-of-the-art in situ
query processing approaches [5,18], Slalom mitigates the
overheads of parsing and tokenizing textual data with posi-
tional maps [5] and partial data caching.

PMs are populated on-the-fly and maintain structural
information about an underlying textual file; they keep the
positions of various file attributes. This information is used
during query processing to “jump” to the exact position of an
attribute or as close as possible to an attribute, significantly
reducing the cost of tokenizing and parsing when a tuple is
accessed. Furthermore, Slalom builds binary caches of fields
that are already converted to binary to reduce parsing and
data type conversion costs of future accesses.

Statistics Store Slalom collects statistics during query exe-
cution and utilizes them to (i) detect workload shifts and (ii)
enable the tuner to evaluate partitioning and index config-
urations. Table 1 summarizes the statistics about Data and
Queries that Slalom gathers per data file. Data statistics are
updated after every partitioning action and include the per-
partition standard deviation (devi ) of values, mean (mi ), max
(maxi ), andmin (mini ) values.Additionally, Slalomkeeps as
global statistics the physical page size (Sizepage) and file size
(Size f ile). Regarding Query statistics, Slalom maintains the
number of queries since the last access (L Ai ), the percentage
of queries accessing each partition (access frequency AFi ),

Table 1 Statistics collected by
Slalom per data file during query
processing and used to decide
(i) which logical partitions to
create and (ii) select the
appropriate matching indexes

Data (partition i) mi Mean value

mini Min value

maxi Max value

devi Standard deviation

DVi #distinct values

Data (global) Sizepage Physical page size

Size f ile File size

Queries (partition i) Cibuild Index building cost

Ci f ullscan Full scan cost

L Ai #queries since last access

AFi Partition access frequency

seli Average selectivity (0.0–1.0)

123



574 M. Olma et al.

and the average query selectivity (seli ). Finally, the full scan
cost over a partition (Ci f ullscan ) and the indexing cost for a
partition (Cibuild ) are calculated by considering the operator’s
data accesses.

Partition Manager The Partition Manager recognizes pat-
terns in the dataset and logically divides the file into
contiguous non-overlapping chunks to enable fine-grained
access and indexing. The Partition Manager specifies a logi-
cal partitioning scheme for each attribute in a relation. Each
partition is internally represented by its starting and ending
byte within the original file. The logical partitioning process
starts the first time a query accesses an attribute. The Partition
Manager triggers the Structure Refiner to iteratively fine-
tune the partitioning scheme with every subsequent query.
All partitions progressively reach a state in which there is no
benefit from further partitioning. The efficiency of a parti-
tioning scheme depends highly on the data distribution and
the queryworkload. Therefore, the PartitionManager adjusts
the partitioning scheme based on value cardinality (details in
Sect. 4.1).

IndexManager The Index Manager estimates the benefit of
an index over a partition and suggests the most promising
combination of indexes for a given attribute/partition. For
every new index configuration, the Index Manager invokes
the Structure Refiner to build the selected indexes during
the execution of the next query. Every index corresponds to
a specific data partition. Depending on the access pattern
of an attribute and the query selectivity, a single partition
may have multiple indexes. Slalom chooses indexes from
two categories based on their capabilities: (i) value-existence
indexes, which respond whether a value exists in a dataset,
and (ii) value-position indexes, which return the positions of
a value within the file. The online nature of Slalom imposes
a significant challenge not only on which indexes to choose
but also on when and how to build them with low cost. The
Index Manager monitors previous queries to decide which
indexes to build and when to build them; timing is based on
an online randomized algorithmwhich considers (i) statistics
on the cost of full scan (Ci f ullscan ), (ii) statistics on the cost of
building an index (Cibuild ), and (iii) partition access frequency
(AFi ), further explained in Sect. 4.2.

Update Monitor The main focus of Slalom is read-only
and append workloads. Still, to provide query result con-
sistency, the Update Monitor checks the input files for both
appends and in-place updates at real time. Slalom enables
append-like updates without disturbing query execution by
dynamically adapting its auxiliary data structures. Specif-
ically, Slalom creates a partition at the end of the file to
accommodate the new data and builds binary caches, PMs,
and indexes over them during the first post-update query. In-
place updates require special care in terms of positional map
and index maintenance because they can change the internal

file structure. Slalom reacts to in-place updates during the
first post-update query by identifying the updated partitions,
updating the positional map, and recreating the other corre-
sponding structures. We discuss in detail how Slalom deals
with updates in Sect. 4.3.

3.2 Implementation

We implement Slalom from scratch in C++. Slalom’s query
engine uses tuple-at-a-time execution based on the Volcano
iterator model [26]. The rest of the components are imple-
mented as modules of the query engine. Specifically, the
Partitioning and Indexing Managers as well as the Struc-
ture Refiner attach to the Query Executor. Furthermore, the
Statistics Store runs as a daemon, gathering the data andquery
statistics and persisting them in a catalog.

Slalom reduces raw data access cost by using vectorized
parsers, binary caches, and positional maps (PMs). The CSV
parser uses SIMD instructions; it consecutively scans a vec-
tor of 256bytes from the input file and applies a mask over
it using SIMD execution to identify delimiters. Slalom pop-
ulates a PM for each CSV file accessed. To reduce memory
footprint, the PM stores only delta distances for each tuple
and field. Specifically, to denote the beginning of a tuple, the
PM stores the offset from the preceding tuple. Furthermore,
for each field within a tuple, the PM stores only the offset
from the beginning of the tuple. The PartitionManager main-
tains a mapping between partitions and their corresponding
PM portions.

Slalom populates binary caches at a partition granularity.
When a query accesses an attribute for the first time, Slalom
consults the positional map to identify the attribute’s posi-
tion and then caches the newly converted values. To improve
insertion efficiency, Slalom stores the converted fields of each
tuple as a group of columns. If Slalom opts to convert an
additional field during a subsequent query, it appends the
converted value to the current column group.

Slalom also populates secondary indexes at a partition
granularity; for each attribute, the indexes store its position in
the file and its position in the binary cache (when applicable).
Slalom uses a cache friendly in-memory B+ tree implemen-
tation. It uses nodes of 256bytes that are kept 60% full. To
minimize the size of inner nodes and make them fit in a pro-
cessor cache line, the keys in the nodes are stored as deltas.
Furthermore, to minimize tree depth, the B+ tree stores all
appearances of a single value in one record.

The StructureRefinermonitors the construction of all aux-
iliary structures and is responsible for memory management.
Slalom works within a memory area of predefined size. The
indexes, PMs, and caches are placed in the memory area.
However,maintaining caches of the entire file and all possible
indexes is infeasible. Thus, the Structure Refiner dynami-
cally decides, on a partition basis, which structure to drop

123



Adaptive partitioning and indexing for in situ query processing 575

Fig. 3 Slalom execution

so Slalom can operate under limited resources (details in
Sect. 4.2).

3.3 Query execution

Figure 3 presents an overview of a query sequence execu-
tion over a CSV file. During each query, Slalom analyzes
its current state in combination with the workload statistics
and updates its auxiliary structures. In the initial state (a),
Slalom has no data or query workload information. The first
query accesses the data file without any support from auxil-
iary structures; Slalom thus builds a PM, accesses the data
requested, and places them in a cache. During each sub-
sequent query, Slalom collects statistics regarding the data
distribution of the accessed attributes and the average query
selectivity to decide whether logical partitioning would ben-
efit performance. If a partition has not reached its stable
state (i.e., further splitting will not provide benefit), Slalom
splits the partition into subsets as described in Sect. 4.1. In
state (b), Slalom has already executed some queries and has
built a binary cache and a PM on the accessed attributes.
Slalom has decided to logically partition the file into two
chunks, of which the first (partition 1) is declared to be in a
stable state. Slalom checks stable partitions for the existence
of indexes; if no index exists, Slalom uses the randomized
algorithm described in Sect. 4.2 to decide whether to build
one. In state (c), Slalomhas executedmore queries, and based
on the query access pattern, it decided index partition 1. In
this state, partition 2 of state (b) has been further split into
multiple partitions of which partition 2 was declared stable
and an index was built on it.

3.4 Extensibility of Slalom

To address the increasing data format heterogeneity, Slalom
queries over a variety of data formats by adding the corre-
sponding parsers and adjusting the online tuner partitioning
algorithm.

The parser transforms all underlying data to a common
representation, which is then passed to the query engine. In
that way, Slalom supports multiple data formats by requiring
a parser for each input data format (e.g., CSV, JSON, binary).
Slalom uses as common representation binary tuples stored

in fixed length slots. Similarly, irrespective to data format,
Slalom’s binary cache has the same format.

For each new data format, the online tuner applies the
same principled techniques of logical horizontal partitioning
and indexing, however, must be adjusted slightly depending
on the format Specifically, for data formats that store records
sequentially (e.g., CSV, binary, XML, and JSON) Slalom
follows the same technique of partitioning and indexing by
creating sequential logical partitions by keeping the first and
last byte of each partition within the file. For data formats
that store records in a PAX-like format [4] (e.g., parquet,
SAM-BAM), the partitioning approach must make sure that
the partitions complete full mini-pages. Slalom supports exe-
cuting queries over CSV, binary, and XML files.

4 Continuous partition and index tuning

Slalom provides performance enhancements without requir-
ing expensive full data indexing nor data file reorganization,
all while adapting to workload changes. Slalom uses an
online partitioning and indexing tuner to minimize the
accessed data by (i) logically partitioning the raw dataset,
and (ii) choosing appropriate indexing strategies over each
partition. To enable online adaptivity, all decisions that the
tunermakesmust haveminimal computational overhead.The
tuner employs a Partition Manager which makes all decision
considering the partitioning strategy, and an Index Manager
whichmakes all decisions considering indexing. This section
presents the design of the Partition and Index Managers as
well as the mathematical models they are based on.

4.1 Raw data partitioning

The optimal access path may vary across different parts of
a dataset. For example, a filtering predicate may be highly
selective in one part of a file and thus benefit from index-
based query evaluation, whereas another file part may be
better accessed via a sequential scan. As such, any optimiza-
tion applied on the entire file may be suboptimal for parts of
the file. To this end, the Partition Manager of Slalom splits
the original data into more manageable subsets; the min-
imum partition size is a physical disk page. The Partition
Manager opts for horizontal logical partitioning as physical
partitioning would require manipulating physical storage—a
breaking point for many of the use cases that Slalom targets.

Why logical partitions Slalom uses logical partitioning to
virtually break a file into more manageable chunks with-
out physical restructuring. The goal of logical partitioning is
twofold: (i) enable partition filtering, i.e., try to group rele-
vant data values together so that they can be skipped for some
queries, and (ii) allow formorefine-grained index tuning.The

123



576 M. Olma et al.

efficiency of logical partitioning in terms of partition filter-
ing depends mainly on data distribution and performs best
with clustered or sorted data. Still, even in the worst case
of uniformly distributed data, although few partitions will
be skippable, the partitioning scheme facilitates fine-grained
indexing. Instead of populating deep B+ tree that cover the
entire dataset, the B+ tree of Slalom are smaller and target
only “hot” subsets of the dataset. Thus, Slalom can operate
under limited memory budget, has a minimal memory foot-
print, and provides rapid responses.

The Partition Manager performs partitioning as a by-
product of query execution and chooses between two parti-
tioning strategies depending on the cardinality of an attribute.
For candidate key attributes, where all tuples have distinct
values, the Partition Manager uses query-based partitioning,
whereas for other value distributions, it uses homogeneous
partitioning. Ideally, the Partition Manager aims to create
partitions such that: (i) each partition contains uniformly dis-
tributed values, and (ii) partitions are pairwise disjoint (e.g.,
partition 1 has values 12, 1, 8 and partition 2 has values 19,
13, 30). Uniformly distributed values in a partition enable
efficient index access for all values in a partition, and creat-
ing disjoint partitions improves partition skipping.

4.1.1 Homogenous partitioning

Homogeneous partitioning aims to create partitions with uni-
formly distributed values and maximize average selectivity
within each partition. Increasing query selectivity over parti-
tions implies that for some queries, some of the newly created
partitions will contain a high percentage of the final results,
whereas other partitionswill contain fewer or zero results and
will be skippable. Computing the optimal set of contiguous
uniformly distributed partitions has exponential complexity
and thus is prohibitive for online execution. Instead, to min-
imize the overhead of partitioning, the Partition Manager
iteratively splits a partition into multiple equi-size partitions.
In every iteration, the tuner decides on (i) when to stop split-
ting and (ii) into how many subsets to split a given partition.

The Partition Manager splits incrementally a partition
until it reaches a stable state (i.e., a state where the tuner esti-
mates no more gains can be achieved from further splitting).
After each partition split, the tuner relies on two conditions
to decide whether a partition has reached a stable state. The
tuner considers whether (i) the variance of values in the new
partition and the excess kurtosis [54] of the value distribu-
tion have become smaller than the variance and kurtosis in
the parent partition, and (ii) the number of distinct values
has decreased. Specifically, as variance and excess kurtosis
decrease, outliers are removed from the partition and the data
distribution of the partition in question becomes more uni-
form.As the number of distinct values per partition iteratively
decreases, the probability of partition disjointness increases.

If any of these metrics increases or remains stable by par-
titioning, then the partition is declared stable. We use the
combination of variance and excess kurtosis as a metric for
uniformity, because their calculation has a constant complex-
ity and can be performed in an incremental fashion during
query execution. An alternative would be using a histogram
orChi-square estimators [54], but thatwould require building
a histogram as well as an additional pass over the data.

Making partitioning decisionsThe number of subpartitions
to which an existing partition is divided depends on the aver-
age selectivity of the past queries accessing the partition and
the size of the partition in number of tuples. The goal of the
tuner is to maximize selectivity in new partitions, thereby
increasing the number of prospective skipped partitions. We
assume that the rows of the partition that have been part of
query results within the partition are randomly distributed.
We model the partitioning problem as randomly choosing
tuples from the partition with the goal to have at least 50%
of the new partitions exhibit higher selectivity than the orig-
inal partition. The intuition is that by decreasing selectivity
in a subset of partitions will enhance partition skipping in
the rest. The more results tuples in some partitions, the better
candidates for skipping are the rest.

We model this problem with the hypergeometric distribu-
tion. Our goal is to choose m partitions by picking randomly
n tuples, andwewant each partition to contain at least k result
tuples. The hypergeometric distribution is a discrete proba-
bility distribution that describes the probability of k random
draws in n draws, without replacement. Thus, assuming that
N represents all the tuples in the file, K represents the tuples
appearing in the result, and N −K all other tuples. The equa-
tion describing the CDF of hypergeometric distribution is the
following:

P(X ≥ k) ≈
n∑

i=k

(K
i

)(N−K
n−i

)
(N
n

) (1)

The calculationof thehypergeometric distribution requires
the calculation of a factorial and has computational complex-
ity O(log(log(nM(nlogn)))), whereM(n) is the complexity
of multiplying two n-digit numbers [14]. Such a computa-
tional complexity is unacceptable for Slalomas this operation
is executed for each query for themajority of partition numer-
ous times and for large partition sizes.

Slalom approximates the hypergeometric distribution
using the binomial distribution. Prior work shows that when
p ≤ 0.1 and N ≥ 60 binomial is a good approximation
of hypergeometric [47], and since the sizes of partitions are
large in comparison with selectivity (small selectivity ≤ 0.1
and N ≥ 1000), Slalom can exploit this observation.

123



Adaptive partitioning and indexing for in situ query processing 577

P(X ≥ k) =
n∑

i=k

(
n

i

)
pi (1 − p)n−i (2)

The binomial distribution requires the calculation of the
binomial coefficient

(n
i

)
which similarly to the hypergeo-

metric distribution requires the calculation of factorial. To
overcome this problem, we further approximate the bino-
mial coefficient calculation by using the following equation
[20]:

(
n

k

)
= (n/k − 0.5)k · ek√

2 · π · k (3)

We combine Eqs. 2 and 3, we use p = K/N and n =
N/m, andwe solve form to get the equation that the Partition
Manager uses to calculate the number of subpartitions created
for every split:

m = N · (sel + logb (1 − sel))

logb
√
2·π ·sel·N

2

where b = e

sel · (1 − sel)
(4)

The tuner chooses this set of partitions with the minimal
overhead and number of iterations. The number of distinct
values is calculated during the next query after each partition
split, whereas the variance and the kurtosis are calculated
incrementally; thus, the partitioning algorithm creates neg-
ligible overheads. To achieve that, Slalom uses a set of
one-pass algorithms for calculating common statistics [48].

4.1.2 Query-based partitioning

Query-based partitioning targets candidate keys or attributes
that are implicitly clustered (e.g., increasing time stamps).
For such attributes, homogeneous partitioning will lead to
increasingly small partitions as the number of distinct val-
ues and variance will be constantly decreasing with smaller
partitions. Thus, the tuner decides upon a static number of
partitions to split the file. Specifically, the number of par-
titions is decided based on the selectivity of the first range
query using the same mechanism as in homogeneous par-
titioning. If the partition size is smaller than the physical
disk page size, the tuner creates a partition per disk page. By
choosing its partitioning approach based on the data distri-
bution, Slalom improves the probability of data skipping and
enables fine-grained indexing.

4.2 Adaptive indexing in Slalom

The tuner of Slalom employs the Index Manager to couple
logical partitions with appropriate indexes and thus decrease

the amount of accessed data. The Index Manager uses value-
existence and value-position indexes; it takes advantage of
the capabilities of each category in order to reduce execution
overhead and memory footprint. To achieve these goals, the
IndexManager enables each partition to havemultiple value-
existence and value-position indexes.

Value-existence indexes Value-existence indexes are the
basis of partition skipping for Slalom; once a partition
has been set as stable, the Index Manager builds a value-
existence index over it. Value-existence indexes allowSlalom
to avoid accessing some partitions. The Index Manager uses
Bloom filters, bitmaps, and zonemaps (min–max values)
as value-existence indexes. Specifically, the Index Manager
uses bitmaps onlywhen indexingBoolean attributes, because
they require a larger memory budget than Bloom Filters for
other data types. The Index Manager also uses zonemaps on
all partitions because they have small memory overhead and
provide sufficient information for value existence on parti-
tions with small value variation. For all other data types, the
Index Manager favors Bloom filters because of their high
performance and small memory footprint. Specifically, the
memory footprint of a Bloom filter has a constant factor, yet
it also depends on the number of distinct values it will store
and the required false positive probability. To overcome the
inherent false positives that characterize Bloom filters, the
Index Manager adjusts the Bloom filter’s precision by cal-
culating the number of distinct values to be indexed and the
optimal number of bytes required to model them [13].

Value-position indexes The Index Manager builds a value-
position index (B+ tree) over a partition to offer fine-grained
access to tuples. As value-position indexes are more expen-
sive to construct compared to value-existence indexes, both
in terms of memory and time, it is crucial for the index to
pay off the building costs in future query performance. The
usefulness and performance of an index depend highly on the
type and selectivity of queries and the distribution of values
in the dataset. Thus, for workloads of shifting locality, the
core challenge is deciding when to build an index.

When to build a value-position index The Index Manager
builds a value-position index over a partition if it estimates
that there will be enough subsequent queries accessing that
partition to pay off the investment (in execution time). As the
tuner is unaware of the future workload trends, decisions for
building indexes are based on the past query access patterns.
To make these decisions, the Index Manager uses an online
randomized algorithm which considers the cost of indexing
the partition (Cibuild ), the cost of full partition scan (Ci f ullscan ),
and the access frequency on the partition (AFi ). These val-
ues depend on the data type and the size of the partition, so
they are updated accordingly in case of a partition split or
an append to the file. The tuner stores the average cost of an
access to a file tuple as well as the average cost of an inser-

123



578 M. Olma et al.

tion to every index for all data types and uses these metrics
to calculate the cost of accessing and building an index over
a partition. In addition, the tuner calculates the cost of an
index scan (Ciindexscan ) based on the cost of a full partition
scan and the average selectivity. For each future access to the
partition, the Index Manager uses these statistics to generate
online a probability estimate calculating whether the index
will reduce execution time for the rest of the workload. Given
this probability, the Index Manager decides whether to build
the index.

The Index Manager calculates the index building proba-
bility using a randomized algorithm based on the randomized
solution of the snoopy caching problem [39]. In the snoopy
caching problem, two ormore caches share the samememory
space which is partitioned into blocks. Each cache writes and
reads from the same memory space. When a cache writes to
a block, caches that share the block spend 1 bus cycle to get
updated. These caches can invalidate the block to avoid the
cost of updating. When a cache decides to invalidate a block
which ends up required shortly after, there is a penalty of p
cycles. The optimization problem lies in findingwhen a cache
should invalidate and when to update the block. The solution
to the index building problem in this work involves a similar
decision. The indexing mechanism of the tuner of Slalom
decides whether to pay an additional cost per query (“updat-
ing a block”) or invest in building an index, hoping that the
investment will be covered by future requests (“invalidating
a block”). Specifically, in cases where the cost of using an
index is negligible compared to the cost of full data scan,
deciding on index construction can be directly mapped to
the snoopy caching problem.

The performancemeasure of randomized algorithms is the
competitive ratio (CR): the ratio between the expected cost
incurred when the online algorithm is used and that of an
optimal offline algorithm that we assume has full knowledge
of the future. When index access cost is negligible, the ran-
domized algorithmof the tuner guarantees optimal CR ( e

e−1 ).
The tuner uses a randomized algorithm in order to avoid the
high complexity of what-if analysis [59] and to improve the
competitive ratio offered by the deterministic solutions [15].

Cost model Assume query workload W. At a given query q
of theworkload, a partition is in one of the two states: it either
has an index or it does not. A state is characterized by the pair
(Cbuild ,Cuse)whereCbuild is the cost to enter the state (e.g.,
build the index) and Cuse the cost to use the state (e.g., use
the index). The initial state is the state with no index (i.e.,
full scan) (Cbuild, f s,Cuse, f s) where Cbuild, f s = 0. In the
second state (Cbuild,idx ,Cuse,idx ), the system has an index
. We assume that the relation between the costs for the two
states is Cbuild,idx > Cbuild, f s and Cuse,idx < Cuse, f s and
Cbuild,idx > Cuse, f s .

Given a partition i , the index building cost over that parti-
tion (Cibuild ), the full partition scan cost (Ci f ullscan ), the index
partition scan cost (Ciindexscan ) and a sequence of queries
Q : [q1, . . . , qT ] access the partition. Assume that qT is
the last query that accesses the partition (and is not known).
At the arrival time of qk, k < T , we want to decide whether
the Index Manager should build the index or perform full
scan over the partition to answer the query.

To make the decision, we need a probability estimate pi
for building the index at moment i based on the costs of
building the index or not. In order to calculate pi , we initially
define the overall expected execution cost of the randomized
algorithm that depends on the probability pi . The expected
cost E comprises three parts:

(i) the cost of using the index, which corresponds to the
case where the index has already been built.

(ii) the cost of queries doing full partition scan, which cor-
responds to the case for which the index has not be
built.

(iii) the cost of building the index, which corresponds to the
case where the building of the index will take place at
time i . Index construction takes place as a by-product
of query execution and includes the cost of the current
query.

E =
T∑

i=1

( i−1∑

j=1

p j · Cuse,idx

+
(
1 −

i−1∑

j=1

p j

)
·
(
pi · Cbuild,idx

+ (1 − pi ) · Cuse, f s

))

Knowing the expected cost, we minimize and we solve
for pi :1

pi = Cuse, f s − Cuse,idx

Cbuild,idx − Cuse, f s
· (T − i) −

(
1 −

i−1∑

j=1

p j

)
(5)

Based on our model, performing a full scan over the com-
plete data file should be always cheaper than an index access
and the amortized extra cost of building the index (over T
queries).

Eviction policy The tuner works within a predefined mem-
ory budget to minimize memory overhead. If the memory
budget is fully consumed and the Index Manager attempts

1 Details on how this formula is derived are found in “Appendix.”

123



Adaptive partitioning and indexing for in situ query processing 579

to build a new index, then it defers index construction for
the next query and searches indexes to drop to make the
necessary space available. The Index Manager keeps all
value-existence indexes once built, because their size ismini-
mal and they are the basis of partition skipping. Furthermore,
the Index Manager prioritizes binary caches over indexes,
because (i) using a cache improves the performance of all
queries accessing a partition, and (ii) accessing the raw data
file is typically more expensive than rebuilding an index for
large partitions. Deciding which indexes from which parti-
tions to drop is based on index size (Sizeindexi ), number
of queries since last access (L Ai ), and average selectivity
(seli ) in a partition. To compute the set of indexes to drop,
the IndexManager uses a greedy algorithmwhich gathers the
least accessed indexes with cumulative size (

∑
i Si zeindexi )

equal to the size of the new index. Specifically, to dis-
cover the least accessed indexes, the Index Manager keeps a
bitmap of accesses for each partition. During a query pred-
icate evaluation on a partition and depending on whether
the current query touches the partition, the Index Manager
shifts the partition’s bitmap to the left and appends a bit
to it: 1 (yes) or 0 (no). When calculating the candidate
indexes to drop, the Index Manager uses SIMD instructions
to evaluate the set of least accessed partitions. Specifically,
each bitmap is an 8-byte unsigned integer which stores
the past 64 queries. In a 256-byte wide CPU register, the
Index Manager uses a bitmask operation to check the occu-
pancy of 32 partitions simultaneously. When all indexes are
used with the same frequency, the tuner uses the average
selectivity of queries on each partition as a tie-breaker con-
dition. The less selective the queries are, the smaller the
gap between index and full scan performance; therefore,
the Index Manager victimizes partitions touched by non-
selective queries.

4.3 Handling file updates

Slalom supports both append-like and in-place updates
directly over the raw data file and ensures consistent results.
In order to achieve efficient data access and correct results
despite updates, Slalom continuously monitors the queried
files for any write operation and stores summaries of the
queried files representing their current state. If a file is
updated, Slalom compares its existing summary, with the
stored state, identifies the changes, and updates any depen-
dent data structures.

In this section, we describe in detail how Slalom: (i) mon-
itors its input files for updates at real time, (ii) calculates and
stores a summary of themost recent consistent state for refer-
ence, (iii) identifies the updated file subsets, and (iv) updates
its internal data structures.

4.3.1 Monitoring Files

In order to recognize whether an input file has been updated
by another application (e.g., vim), Slalom uses OS support
(i.e., inotify [43]). Specifically, Slalom initializes a watch-
dog, over the queried file, which is triggered when the file is
written upon and adds a log entry into a queue. This queue
contains all updates that have not been addressed by Slalom
yet. Slalom checks the queue for new updates both at the
beginning of every query as well as during execution. During
a running query, Slalomchecks for any updates that happened
in data that has been already scanned. If such an update has
taken place, Slalom re-executes the query as results might
be invalid if the records processed come from different file
versions.

4.3.2 Calculating and Storing State

In order to be able to discover the updated rows in the file
and the type of update (append or in-place), Slalom exploits
its logical partitioning scheme. For each partition, Slalom
stores a checksum encoding the contents within that parti-
tion and the starting and ending positions of the partition in
the file. This information is collected during the first query
accessing a partition. The collected information summarizes
the size as well as the content of the partition and thereby
is sufficient to identify the existence of an update. As the
checksum calculation is part of the critical path of query
execution, it increases the query runtime. To alleviate this
cost, Slalom exploits specialized hardware that offers high
throughput in checksumcalculation. Furthermore, the perfor-
mance and accuracy of checksum algorithms depend highly
on the size of data they summarize; thus, Slalom varies the
checksum algorithm depending on partition size. Currently,
Slalom supports two checksum algorithms: (i) MD5 and (ii)
CRC; these algorithms are widely used in a variety of appli-
cations based on their reliability and performance.

MD5 algorithm MD5 [58] is a cryptographic hash func-
tion and widely used data integrity verification checksum
[65]. Given input of arbitrary size, MD5 algorithm produces
a 128-bit output, which is usually represented in 32 hexadeci-
mal digits.MD5 uses four nonlinear functions, and it can deal
with data of arbitrary length.MD5 serves as a good candidate
for detecting file updates; however, its calculations on a CPU
are expensive. Thus, we design a parallelization scheme for
MD5. MD5 is an irreversible transformation transforming a
set of data of any length into a hash value of 128-bit length.
MD5 is a consecutive processing method as the original
algorithm processes the input data incrementally in 512-bit
groups and combines them with the result coming from the
processing of prior groups. In order to parallelize the com-
putation of MD5, we compute in parallel different portions

123



580 M. Olma et al.

of the checksum. We divide the input data into small blocks
of equal size. Subsequently, we perform the standard MD5
algorithm on each data block, in parallel, and we store the
calculated checksums. Finally, the resulting checksums are
combined until the result is 128-bit long. The checksum com-
puted by this approach is not identical to the standard MD5
checksum and however has equal encryption strength [30].
As the algorithm is inherently suitable for multi-threading,
and to further improve the performance of MD5 checksum
calculation, we implemented the parallelMD5 over NVIDIA
CUDA and calculate checksums over NVIDIA GPUs.

CRC Cyclic redundancy codes are used to mostly detect
errors in network packets [55]. As this operation is latency
sensitive, modern processors have added CPU instructions,
_mm_crc32_u64, for calculating 32-bit CRC code to its
SSE4.2 instruction set. To obtain m-bit CRC code, the n-bit
input data are first appended withm zeros. Then, it is XORed
with a polynomial divisor of the size of (n + 1) bit from left
to right. The last m bits are the final resulting code.

Typically a n-bit CRC applied to a data block of arbitrary
length will detect any single error burst not longer than n bits
and will detect a fraction 1

(1−2−n)
of all longer error bursts.

As partitions used by Slalom can be of arbitrary size, Slalom
calculates the 32-bit CRC value for each 1024-byte block in
the partition and then adds up all computed values to give
the final verification code. This code has the same detection
ability, namely detecting changes no longer than 4bytes and
almost all longer changes.

4.3.3 Recognizing Update Type and Updating Data
Structures

In order to provide efficient data access, Slalom builds a
set of data structures which are built based on the existing
state of the queried file. Updates may change that state thus
making the prior investments obsolete. Specifically, indexes
and PMs are sensitive to the specific location of attributes
and number of tuples within the file. Similarly, caches and
Bloomfilters become obsolete with any change in a partition.
To overcome this issue, Slalom updates its data structures
accordingly depending on the update type.

To identify the type of update, Slalom compares the cur-
rent state of each partition with the stored one. Thus, Slalom
checks whether the partition beginning and ending character
has changed or if the checksum has changed. If the state of
each partition matches with the existing one, then the update
type is an append. Otherwise, it is an in-place update.

Append-like updatesSlalom supports updates in an append-
like scenario without disturbing query execution and by
dynamically extending auxiliary data structures. In append-
like scenarios, Slalom creates a new partition at the end of
the file to accommodate the new data. Depending on the

partitioning approach, Slalom either accumulates updates to
create partitions of equal size (i.e., query-based partitioning)
or dynamically repartitions the fresh data. Once Slalom has
organized the newdata in partitions, it treats them similarly to
a first time input. Thus, during the first query after an update,
Slalombuilds binary caches andpositionalmaps over the new
data. When the new partitions are declared stable, Slalom
builds indexes on top of them.

In-place updates In-place updates correspond to random
changes in the file by another application, such as updat-
ing values of specific fields or adding additional rows in the
middle of the file. In-place updates are more challenging,
especially when considering the case of the positional map
and indexes. A change in a position of an attribute in the data
file might require significant reorganization in all generated
data structures.

Updating positional maps To update the positional map for a
modified partition, Slalom scans character by character each
field to narrow down the updated parts. Once the updated
section has been identified, Slalom stores the difference in
byte offsets between the old and new fields into a delta list.
All new changes are appended to the list, and any possible
changes in previous offset differences are being integrated as
well. The delta list adds additional computational overhead
when using the positional map as for every access Slalom
must access the delta list to check whether the position has
been altered by an update. As the delta list is growing, the
complexity of position computation is growing as well. Thus
to reduce the query cost, the delta list is incorporated into
the original positional map every ten updates. Specifically,
to incorporate the delta list into the positional map, Slalom
scans over the delta list and adds the offsets to the existing
indexes in the positional map. This way, it does not have to
completely reconstruct the positionalmapwhile reducing the
delta list.

Updating caches and indexes In order to keep minimal
memory footprint, Slalom does not store a replica of the
original file to be able retrieve old values for each updated
field. Hence, Slalom is unable to update indexes and caches.
Rather, it invalidates and re-builds them.

5 Experimental Evaluation

In this section, we present an analysis of Slalom. We ana-
lyze its partitioning and indexing algorithm and compare it
against state-of-the-art systems over both synthetic and real-
life workloads.

MethodologyWe compare Slalom against DBMS-X, a com-
mercial state-of-the-art in-memoryDBMS that stores records
in a row-oriented manner and the open-source DBMS Post-
greSQL (version 9.3). We use DBMS-X and PostgreSQL

123



Adaptive partitioning and indexing for in situ query processing 581

with two different configurations: (i) fully loaded tables and
(ii) fully loaded, indexed tables. We also compare Slalom
with the in situ DBMS PostgresRaw [5]. PostgresRaw is an
implementation ofNoDB [5] over PostgreSQL;PostgresRaw
avoids data loading and executes queries by performing full
scans over CSV files. In addition, PostgresRaw builds posi-
tional maps on-the-fly to reduce parsing and tokenization
costs. Besides positional maps, PostgresRaw uses caching
structures to hold previously accessed data in a binary for-
mat. Furthermore, to compare Slalom with other adaptive
indexing techniques we integrate into Slalom two varia-
tions of database cracking: (i) standard cracking [32] and
(ii) the MDD1R variant of stochastic cracking [28]. We
chose MDD1R as it showed the best overall performance
in [60]. We integrated the cracking techniques by disabling
the Slalom tuner and setting cracking as the sole access path.
Thus, Slalom and cracking use the same execution engine
and have the same data access overheads.

Slalom’s query executor pushes predicate evaluation down
to the access path operators for early tuple filtering, and
results are pipelined to the other operators of a query (e.g.,
joins). Thus, in our analysis, we focus on scan intensive
queries. We use select–project–aggregate queries to mini-
mize the number of tuples returned and avoid any overhead
from the result tuple output that might affect the measured
times. Unless otherwise stated, the queries are of the follow-
ing template (OP : {<,>,=}):
SELECT agg(A), agg(B), ..., agg(N) FROM R
WHERE A OP X (AND A OP Y)

Experimental Setup The experiments are conducted in a
Sandy Bridge server with a dual socket Intel(R) Xeon(R)
CPU E5-2660 (8 cores per socket @ 2.20 Ghz), equipped
with 64 KB L1 cache and 256 KB L2 cache per core, 20
MB L3 cache shared, and 128GB RAM running Red Hat
Enterprise Linux 6.5 (Santiago—64 bit) with kernel version
2.6.32. The server is equipped with a RAID-0 of 7 250GB
7500 RPM SATA disks.

5.1 Adapting to workload shifts

Slalom adapts efficiently to workload shifts despite (i)
changes in data distribution, (ii) changes in query selectiv-
ity, and (iii) changes in query locality—both vertical (i.e.,
different attributes) and horizontal (i.e., different records).
We demonstrate the adaptivity experimentally by executing
a dynamic workload with varying selectivity and access pat-
terns over a synthetic dataset.

Methodology To emulate the worst possible scenario for
Slalom, we use a relation of 640 million tuples (59GB),
where each tuple comprises 25 unsigned integer attributes
with uniformly distributed values ranging from 0 to 1000.

Slalom is unable to find a value clustering in the file because
all values are uniformly distributed; thus, Slalom applies
homogeneous partitioning. Slalom, cracking, and Postgres-
Raw operate over the CSV data representation, whereas
PostgreSQL and DBMS-X load the raw data prior to query-
ing. In this experiment, we limit the index memory budget
for Slalom to 5GB and the cache budget to 10GB. All other
systems are free to use all available memory. Specifically, for
this experiment DBMS-X required 98GB of RAM to load
and fully build the index.

We execute a sequence of 1000 point and range select–
project–aggregation queries following the template from
Sect. 5. The selection value is randomly selected from the
domain of the predicate attribute. Point query selectivity is
0.1%, and range query selectivity varies from 0.5 to 5%. To
emulate workload shifts and examine system adaptivity, in
every 100 queries, queries 1–30 and 61–100 use a predicate
on the first attribute of the relation and queries 31–60 use a
predicate on the second attribute.

The indexed variations of PostgreSQL and DBMS-X
build a clustered index only on the first attribute. It is pos-
sible to build indexes on more columns for PostgreSQL
and DBMS-X; however, it requires additional resources and
would increase data-to-query time. In addition, choosing
which attributes to index requires a priori knowledge of
the query workload, which is unavailable in the dynamic
scenarios that Slalomconsiders. Indicatively, building an sec-
ondary index on a column for PostgreSQL for our experiment
takes ∼25 minutes. Thus, by the time PostgreSQL finishes
indexing, Slalom will have finished executing the workload
(Fig. 6).

Slalom Convergence Figure 4 shows the response time of
each query of the workload for the different system config-
urations. For clarity, we present the results for the first 100
queries. To emulate the state of DBMS systems immediately
after loading, all systems run from a hot state where data are
resting in the OS caches. Figure 4 plots only query execution
time and does not show data loading or index building for
PostgreSQL and DBMS-X.

The runtime for the first query of Slalom is 20× slower
than its average query time, because during that query it
builds a positional map and a binary cache. In subsequent
queries (queries 2–7), Slalom iteratively partitions the dataset
and builds B+ tree. After the initial set of queries (queries
1–6), Slalom has comparable performance to the one of Post-
greSQLs over fully indexed data. During the third query,
multiple partitions stabilize simultaneously, and thus, Slalom
builds many B+ tree and Bloom filter indexes, adding consid-
erable overhead. When Slalom converges to its final state, its
performance is comparable to indexed DBMS-X. When the
queried attribute changes (query 31), Slalom starts partition-
ing and building indexes on the new attribute. After query

123



582 M. Olma et al.

Fig. 4 Sequence of 100 queries. Slalom dynamically refines its indexes to reach the performance of an index over loaded data

Fig. 5 A breakdown of the operations taking place for Slalom during the execution of a subset of the 100 point query sequence

60, when the workload filters data based on the first attribute
again (for which the partitioning is already stable), Slalom
re-uses the pre-existing indexes.

PostgreSQL with no indexes demonstrates a stable exe-
cution time as it has to scan all data pages of the loaded
database regardless of the result size. Due to the queries
being very selective, when an index is available for Post-
greSQL, the response times are ∼9× lower when queries
touch the indexed attribute. DBMS-X keeps all data in mem-
ory and uses memory-friendly data structures, so it performs
on average 3× better than PostgreSQL. The difference in
performance varies with query selectivity. In highly selective
queries, DBMS-X is more efficient in data access, whereas
for less selective queries the performance gap is smaller.
Furthermore, for very selective queries, indexed DBMS-X
is more efficient than Slalom as its single B+ tree traverses
very few results nodes.

During query 1, PostgresRaw builds auxiliary structures
(cache, positional map) and takes 3× more time (180s) than
its average query runtime. PostgresRaw becomes faster than
the unindexed PostgreSQL variation as its scan operators
use vector-based (SIMD) instructions and exploit compact
caching structures.

Similarly, during query 1, cracking builds a binary cache
and populates the cracker column it uses for incremental
indexing. The runtime of its first query is 4× slower than
the average query time for PostgreSQL without indexes.
When it touches a different attribute (query 31), it also pop-
ulates a cracker column for the second attribute. Despite the
high initialization cost, cracking converges efficiently and
reaches its final response time after the fourth query. The
randomness in the workload benefits cracking as it splits
the domain into increasingly smaller pieces. After converg-
ing, cracking performance is comparable to the PostgreSQL
with index. Slalom requires more queries to converge than

cracking. However, after it converges, Slalom is∼ 2× faster
than cracking. This difference stems from cracking execution
overheads. Cracking sorts the resulting tuples based on their
memory location and enforces sequential memory access.
This sorting operation adds an overhead, especially for less
selective queries.

Execution breakdown Slalom aims to build efficient access
paths with minimal overhead. Figure 5 presents the break-
down of query execution for the same experiment as before.
For clarity, we present only queries Q1–15 and Q31–45 as
Q16–30 show the same pattern as Q11–15. Queries Q1–15
have a predicate on the first attribute, and queries Q31–45
have a predicate on the second attribute.

During the first query, Slalom scans through the origi-
nal file and creates the cache. During Q2 and Q3, Slalom is
actively partitioning the file and collects data statistics (i.e.,
distinct value counts) per partition; Slalom bases the fur-
ther partitioning and indexing decisions on these statistics.
Statistics gathering cost is represented in Fig. 5 as “Insert
to Metadata.” During queries Q2 and Q3, as the partitioning
scheme stabilizes, Slalom builds Bloom filters and B+ trees.
Q3 is the last query executed using a full partition scan, and
since it also incurs the cost of index construction, there is a
local peak in execution time. During Q4 through Q8, Slalom
increasingly improves performance by building new indexes.
After Q31, the queries use the second attribute of the relation
in the predicate, and thus, Slalom repeats the process of parti-
tioning and index construction. In total, even after workload
shifts, Slalom converges into using index-based access paths
over converted binary data.

Full workload: from raw data to results Figure 6 presents
the full workload of 1000 queries, this time starting with cold
OS caches and no loaded data to include the cost of the first
access to raw data files for all systems. We plot the aggregate
execution time for all approaches described earlier, including

123



Adaptive partitioning and indexing for in situ query processing 583

Fig. 6 Sequence of 1000 queries. Slalom does not incur loading cost
and dynamically builds indexes

Fig. 7 Memory consumption of Slalom vs. a single fully built B+ tree
for PostgreSQL and DBMS-X. Slalom uses less memory because its
indexes only target specific areas of a raw file

the loading and indexing costs for PostgreSQL and DBMS-
X.

PostgresRaw, Slalom, and cracking incur no loading and
indexing cost and start answering queries before the other
DBMS load data and before the indexed approaches finish
index building. Unindexed PostgreSQL incurs data loading
cost as well as a total query aggregate greater than Post-
gresRaw. Indexed PostgreSQL incurs both indexing and data
loading cost, and due to some queries touching a non-indexed
attribute, its aggregate query time is greater than the one
of Slalom. Unindexed DBMS-X incurs loading cost; how-
ever, thanks to its main-memory friendly data structures and
execution engine, it is faster than the disk-based engine of
PostgreSQL.

After adaptively building the necessary indexes, Slalom
has comparable performance with a conventional DBMS
which uses indexes. cracking converges quickly and adapts
to the workload efficiently. However, creating the cracker
columns incurs a significant cost. Overall, cracking and
Slalom offer comparable raw-data-to-results response time
for this workload, while Slalom requires 0.5× memory. We
compare in detail cracking and Slalom in Sect. 5.3.

Memory consumption Figure 7 plots the memory con-
sumption of (i) the fully built indexes used for DBMS-X
and PostgreSQL, (ii) the cracker columns for cracking,
and (iii) the indexes of Slalom. Figure 7 excludes the size
of the caches used by Slalom and cracking or the space
required by DBMS-X after loading. The traditional DBMS
require significantly more space for their indexes. Orthogo-
nally to the index memory budget, DBMS-X required 98GB
of memory in total, whereas the cache of Slalom required
9.7GGB. Cracking builds its cracker columns immediately

Fig. 8 Number of accessed tuples using file, cache, or B+ tree corre-
sponding to the 100 queries of synthetic workload

Fig. 9 Effect of different indexes on point and range queries over uni-
form and clustered datasets

when accessing a new attribute. The cracker column requires
storing the original column values as well as pointers to the
data; thus, it has a large memory footprint even for low value
cardinality. Regarding the indexes of Slalom, when the focus
shifts to another filtering attribute (Q31), Slalom increases
its memory consumption, as during Q31–34 it creates logi-
cal partitions and builds Bloom filters and B+ tree indexes on
the newly accessed attribute. By building and keeping only
the necessary indexes for a query sequence, Slalom strikes a
balance between query performance andmemory utilization.

Minimizing data access The performance gains of Slalom
are a combination of data skipping based on partitioning,
value-existence indexes, and value-position indexes, all of
which minimize the number of tuples Slalom has to access.
Figure 8 presents the number of tuples that Slalom accesses
for each query in this experiment. We observe that as the
partitioning and indexing schemes of Slalom converge, the
number of excess tuples accessed is reduced. Since the
attribute participating in the filtering predicate of queries
Q31–60 has been cached, Slalom accesses the raw data file
only during the first query. Slalom serves the rest of the
queries utilizing only the binary cache and indexes. For the
majority of queries, Slalom responds using an index scan.
However, there are queries where it responds using a combi-
nation of partition scan and index scan.

Figure 9 presents how the minimized data access trans-
lates to reduced response time and the efficiency of data
skipping and indexing for different data distribution and
different query types. Specifically, it presents the effect of
zonemaps, Bloom filters, and B+ trees on query performance
for point queries and range queries with 5% selectivity over
uniform and clustered datasets. The clustered dataset con-
tains mutually disjointed partitions (i.e., subsets of the file

123



584 M. Olma et al.

Fig. 10 Slalom performance using different memory budgets

Fig. 11 Slalom memory allocation (12GB memory budget)

contain values which do not appear in the rest of the file).
The workload used is the same used for Fig. 4. Zonemaps
are used for both range and point queries and are most effec-
tive when used over clustered data. Specifically, they offer a
∼ 9× better performance than full cache scan. Bloom filters
are useful only for point queries. As the datasets have values
in the domain [1, 1000], point queries have low selectivity
making Bloom filters ineffective. Finally, B+ trees improve
performance for both range and point queries. The effect of
B+ tree is seen mostly for uniform data where partition skip-
ping is less effective. Slalom stores all indexes in-memory;
thus, by skipping a partition Slalom avoids full access of
the partition and reduces memory access or disk I/O if the
partition is cached or not, respectively.

Summary We compare Slalom against (i) a state-of-the-
art in situ querying approach, (ii) a state-of-the-art adaptive
indexing technique, (iii) a traditional DBMS, and (iv) a state-
of-the-art in-memory DBMS. Slalom gracefully adapts to
workload shifts using an adaptive algorithm with negligible
execution overhead. Slalom offers performance comparable
with a DBMS which uses indexes, while also being more
conservative in memory space utilization.

5.2 Working under memory constraints

Asdescribed inSect. 4.2, Slalomefficiently uses the available
memory budget to keep the most beneficial auxiliary struc-
tures. We show this experimentally by executing the same
workload under various memory utilization constraints. We
run the 20 first queries—amix of point and range queries.We
consider three memory budget configurations with 10GB,
12GB, and 14GB of available memory, respectively. The
budget includes both indexes and caches.

Figure 10 presents the query execution times for the work-
load given the three different memory budgets. The three
memory configurations build a binary cache and create the
same logical partitioning. Slalom requires 13.5GB in total for
this experiment; given an 14GBmemory budget, it can build
all necessary indexes, leading to the best performance for the
workload. For the 10GB and 12GB memory budgets, there
is insufficient space to build all necessary indexes; thus, these
configurations experience a performance drop. We observe
that configurations with 10GB and 12GB memory budgets
outperform the configuration with 14GB of memory bud-
get for individual queries (i.e., Q3 and Q5). The reason is
that the memory-limited configurations build fewer B+ trees
during these queries than the configuration with 14GB of
availablememory.However, future queries benefit fromaddi-
tionalB+ trees, amortizing the extra overheadover a sequence
of queries.

Figure 11 presents the breakdown of memory allocation
for the same query sequence when Slalom is given a 12GB
memory budget. We consider the space required for stor-
ing caches, B+ trees, and Bloom filters. The footprint of the
statistics and metadata Slalom collects for the cost model
and zonemaps is negligible; thus, we exclude them from the
breakdown. Slalom initially builds the binary cache and log-
ically partitions the data until some partitions become stable
(Q1, Q2). At queries Q3, Q4, and Q5, Slalom starts building
B+ trees, and it converges to a stable state at query Q7 where
all required indexes are built. Thus, from Q7–Q10 Slalom
stabilizes performance. Overall, this experiment shows that
Slalom can operate under limited memory budget gracefully
managing the available resources to improve query execution
performance.

5.3 Adaptivity efficiency

Slalom adapts to query workloads as efficiently as state-
of-the-art adaptive indexing techniques while working with
less memory. Furthermore, it exploits any potential data
clustering to further improve its performance. We demon-
strate this by executing a variety of workloads. We use
datasets of 480M tuples (55GB on disk); each tuple com-
prises 25 unsigned integer attributes whose values belong to
the domain [1, 10,000]. Queries in all workloads have equal
selectivity to alleviate the noise from data access; all queries
have 0.1% selectivity, i.e., select ten consecutive values.

Methodology Motivated by related work [60], we compare
Slalom against cracking and stochastic cracking in three
cases.

Random workload over Uniform dataset We execute a
sequence of range queries which access random ranges
throughout the domain to emulate the best-case scenario for
cracking. As subsequent queries filter on random values and

123



Adaptive partitioning and indexing for in situ query processing 585

(a) (b) (c) (d)

Fig. 12 Comparing cracking techniques with Slalom

the data are uniformly distributed in the file, cracking con-
verges and minimizes data access.

“Zoom In Alternate” over Uniform dataset To emulate
the effect of patterned accesses, we execute a sequence of
queries that access either part of the domain in alternate,
i.e., first query: [1, 10], second query: [9991, 10,000], third
query: [11, 20], etc. This access pattern is one of the sce-
narios where the original cracking algorithm underperforms
[28]. Splits are only query driven, and every query splits data
into a small piece and the rest of the file. Thus, the improve-
ments in performance with subsequent queries are minimal.
Stochastic cracking alleviates the effect of patterned accesses
by splitting in more pieces apart from the ones based on
queries.

Random workload over Clustered dataset This setup
examines how adaptive indexing techniques perform on
datasets where certain data values are clustered together, for
example data clustered on time stamp or sorted data. The
clustered dataset we use in the experiment contains mutually
disjoint partitions, i.e., subsets of the file contain specific val-
ues which appear solely in those locations and do not appear
in the rest of the file.

Figure 12a demonstrates the cumulative execution time
for cracking, stochastic cracking, and Slalom for the ran-
dom workload over uniform data. All approaches start from
a cold state, thus during the first query they parse the raw
data file and build a binary cache. Stochastic cracking and
cracking incur an additional cost of cracker column ini-
tialization during the first query, but reduce execution time
with every subsequent query. During the first three queries,
Slalom creates its partitions; during the following six queries,
Slalom builds the required indexes and finally converges to
a stable state at query 10. Due to its fine-grained index-
ing and local memory accesses, Slalom provides ∼ 8×
lower response time than cracking and their cumulative exe-
cution time is equalized during query 113. Furthermore,
Fig. 12d demonstrates thememory consumption of the crack-
ing approaches and Slalom for the same experiment. The
cracking approaches have the same memory footprint; they
both duplicate the full indexed column along with pointers
to the original data. On the other hand, the cache-conscious

B+ trees of Slalom stores only the distinct values along
with the positions of each value, thus reducing the memory
footprint. In addition, Slalom allocates space for its indexes
gradually, offering efficient query execution even with lim-
ited resources.

Figure 12b shows the cumulative execution time for
cracking, stochastic cracking, and Slalom for the “Zoom
In Alternate” workload over uniform data. Cracking needs
more queries to converge to its final state as it is cracking
only based on query-driven values. Stochastic cracking con-
verges faster because it cracks based on more values except
the ones found in queries. Slalom uses a combination of data
andquery-drivenoptimizations. Slalom requires an increased
investment during the initial queries to create its partition-
ing scheme and index the partitions, but ends up providing
7× lower response time, and equalizes cumulative execution
time with cracking at query 53 and stochastic cracking at
query 128.

Figure 12c presents the cumulative execution time of
cracking, stochastic cracking, and Slalom for the random
workload over implicitly clustered data. In this situation,
Slalom exploits the clustering of the underlying data early
on (from the second query) and skips the majority of data.
For the accessed partitions, Slalom builds indexes to fur-
ther reduce access time. Similarly to Fig. 12a, the cracking
approaches crack only based on the queries and are agnostic
to the physical organization of the dataset.

SummarySlalomconverges comparably to the best cracking
variation when querying uniform data over both random and
“Zoom In Alternate” workloads. Furthermore, when Slalom
operates over clustereddata, it exploits the physical data orga-
nization and providesminimal data-to-query time. Finally, as
Slalom builds indexes gradually and judiciously, it requires
less memory than the cracking approaches, and it can operate
under a strict memory budget.

5.4 Slalom over real data

In this experiment, we demonstrate how Slalom serves a real-
life workload. We use a smart home dataset (SHD) taken
from an electricity monitoring company. The dataset con-

123



586 M. Olma et al.

Fig. 13 Sequence of SHD analytics workload. Slalom offers consistently comparable performance to in-memory DBMS

Table 2 Cost of each phase of a
smart-meter workload

System Loading (s) Index build (s) Queries (s) Total (s)

Slalom 0 0 4301 4301

Cracking 0 0 6370 6370

PostgresRaw 0 0 10077 10,077

PostgresSQL (with index) 2559 1449 9058 13,066

PostgreSQL (no index) 2559 0 15,379 17,938

DBMS-X (with index) 6540 1207 3881 11,628

DBMS-X (no index) 6540 0 5243 11783

tains time-stamped information about sensor measurements
such as energy consumption and temperature, as well as a
sensor ID for geographical tracking. The time stamps are in
increasing order. The total size of the dataset is 55GB in
CSV format. We run a typical workload of an SHD analyt-
ics application. Initially, we ask a sequence of range queries
with variable selectivity, filtering data based on the time-
stamp attribute (Q1–29). Subsequently, we ask a sequence
of range queries which filter data based on energy consump-
tionmeasurements to identify a possible failure in the system
(Q30–59). We then ask iterations of queries that filter results
based on the time-stamp attribute (Q60–79, Q92–94), the
energy consumption (Q80–84, Q95–100), and the sensor ID
(Q85–91), respectively. Selectivity varies from 0.1 to 30%.
Queries focusing on energy consumption are the least selec-
tive.

Figure 13 shows the response time of the different
approaches for the SHD workload. All systems run from a
hot state, with data resting in the OS caches. The indexed
versions of PostgreSQL and DBMS-X build a B+ tree on the
time-stamp attribute. The figure plots only query execution
time and does not show the time for loading or indexing for
PostgreSQL and DBMS-X. For other systems, where build-
ing auxiliary structures takes place during query execution,
execution time contains the total cost.

PostgreSQL and DBMS-X without indexes perform full
table scans for each query. Q30–60 are more expensive
because they are not selective. For queries filtering on the
time stamp, indexed PostgreSQL exhibits 10× better perfor-
mance than PostgreSQL full table scan. Similarly, indexed
DBMS-X exhibits 17× better performance compared to
DBMS-X full table scan. As the queries using the index
become more selective, response time is reduced. For the

queries that do not filter data based on the indexed field, the
optimizer of DBMS-X chooses to use the index despite the
predicate involving a different attribute. This choice leads to
response time slower than the DBMS-X full scan.

PostgresRaw is slightly faster than PostgreSQL without
indexes. The runtime of the first query that builds the auxil-
iary structures (cache, positional map) is 8× slower (374s)
than the average query runtime. For the rest of the queries,
PostgresRaw behaves similar to PostgreSQL and performs a
full table scan for each query.

After the first query, Slalom identifies that the values of the
time-stamp attribute are unique. Thus, it chooses to statically
partition the data following the cost model for query-based
partitioning (Sect. 4.1) and creates 1080 partitions. Slalom
creates the logical partitions during the second query and cal-
culates statistics for each partition. Thus, the performance of
Slalom is similar to that of PostgresRaw for the first two
queries. During the third query, Slalom takes advantage of
the implicit clustering of the file to skip the majority of the
partitions and decides whether to build an index for each of
the partitions. After Q5, when Slalom has stabilized parti-
tions and already built a number of indexes over them, the
performance is better than that of the indexed PostgreSQL
variation.

QueriesQ2–Q30 represent a best-case scenario forDBMS-
X: data reside in memory, and its single index can be used;
therefore, DBMS-X is faster than Slalom. After Q29, when
queries filter on a different attribute, the performance of
Slalom becomes equal to that of PostgresRaw until Slalom
builds indexes. Because the energy consumption attribute has
multiple appearances of the same value, Slalom decided to
use homogeneous partitioning. Q30 to Q59 are not selective,
and thus, execution times increase for all systems.

123



Adaptive partitioning and indexing for in situ query processing 587

Fig. 14 Slalom executing workload with append-like updates

Table 2 shows the costs for loading and indexing as well
as the aggregate query costs for the same query workload
of 100 queries, for all the systems. Due to the queries being
non-selective, the indexed and non-indexed approaches of
DBMS-X have similar performance; thus, in total Slalom
exploits its adaptive approach to offer competitive perfor-
mance to the fully indexed competitors.

Summary Slalom serves a real-world workload which
involves fluctuations in the areas of interest and queries of
great variety in selectivity. Slalom serves the workload effi-
ciently due to its lowmemory consumption and its adaptivity
mechanisms which gradually lower query response times
despite workload shifts.

5.5 Slalom handling file updates

In this section, we demonstrate Slalom’s update efficiency
for append-like and in-place updates.

5.5.1 Append-like Updates

Slalommonitors changes in the queried files and dynamically
adapts its data structures. In this experiment, we execute a
sequence of 20 point queries following the template from
Sect. 5 with selectivity 0.1%. Q1 to Q10 run on the origi-
nal relation of 18 million tuples (22GB). Between queries
Q10 and Q11, we append to the CSV dataset 6GB of addi-
tional uniformly distributed data. Slalom detects the change
in the structure of the file and iteratively creates new logical
partitions for the new tuples and creates Bloom filters and
B+ trees during Q11, Q12, and Q13. Between Q16 and Q17,
we append again 6GB of data to the end of the CSV dataset.
Slalom again dynamically partitions and builds indexes. Fig-
ure 14 shows the execution time for each of the queries in
the sequence. Q11 and Q17 execute immediately after the
appends; thus, we see higher execution time because Slalom
(i) accesses raw data and (ii) builds auxiliary structures—
positional maps and binary caches—over them. After this
update-triggered spike in execution time, Slalom’s partition-
ing and indexing schemes converge and the execution time
becomes lower and stabilizes.

Fig. 15 Slalom executing workload with in-place updates

Fig. 16 Time breakdown of query executing with in-place updates

5.5.2 In-place Updates

We now show that Slalom handles in-place updates. We exe-
cute a sequence of 15 point queries following the template
from Sect. 5 with selectivity 0.01%, run on a 25 million
tuple relation (27GB). We query on a candidate key field
to make Slalom use the query-based partitioning strategy
and observe solely the effect of updates on a partition. To
evaluate update efficiency, we develop a random update gen-
erator which updates fields and rows within a file in random
places. Before Q5, the update generator updates eight ran-
dom rows, and before Q10, it updates three random rows.
Figure 15 shows the execution time for each of the queries in
the sequence. During Q1, Slalom creates 345 partitions and
builds the positional map and indexes. During Q5 and Q10,
the Update Monitor detects that the file has been updated.
Slalom compares the state of all partitions to identify the
updated partitions, performs the required corrections to the
positional map, and re-builds the indexes. Figure 16 shows
this process and presents the breakdown of query execution
for Q1, Q5, and Q10. During Q1, along with query execu-
tion, Slalom calculates the MD5 codes for all partitions. The
update before Q5 touched more partitions than the second
update at Q10. Thus, Q5 has more partition data structures to
fix.As the query execution progresses, the increasing number
of partitions increases the number of checksum calculations.

5.5.3 Speed-up Checksum Calculation

This experiment examines the effect of using GPU and
CRC accelerators for the calculation of the partition check-
sums. We execute 3 point queries following the template
from Sect. 5 with selectivity 0.01%, over a 25 million tuple
relation (27GB). To examine the efficiency of GPU and CRC
checksum calculation, we vary the number of partitions cre-

123



588 M. Olma et al.

Fig. 17 Checksum calculation using different accelerators with differ-
ent partition sizes

Fig. 18 Sequence of 40 queries over a binary file

Fig. 19 Cumulative execution time of 40 queries over a binary file

ated bySlalom.Thefirst query breaks the file into 100 equally
sized partitions, the second query into 1000 partitions, and
the third into 10,000 partitions. Before each query, we make
a random update in the file to activate the re-calculation of
checksums. Figure 17 shows the checksum calculation cost
for the three queries using the three different approaches.
When using the CPU (either the dedicated CRC instructions
orMD5calculation), the cost of calculation remains constant.
On the other hand, when using theGPU, the checksum calcu-
lation is slower when the number of partitions is increasing.
The best approach for calculating checksums is using the
CRC. However, as CRC is able to compute checksums over
input of 1024-byte blocks, it generates a large number of
checksums for each partition. Thus, making checksum com-
parison is more time-consuming.

5.6 Additional data formats: binary data

This section shows that, besides CSV data, Slalom can also
operate efficiently over binary datasets. To accommodate
binary data, Slalom employs the same techniques as when
running over CSV files, with two exceptions. It tunes the
cost model to reduce the access cost equations previously
associated with text-based data accesses and does not have
to build a positional map. Figure 18 compares the execution

time of Slalom and PostgreSQL with and without indexes.
We use a binary flat file with 100 million uniformly dis-
tributed tuples, each having 30 columns (12GB), and we run
range queries with selectivity 1%. For Slalom, the initial data
access is faster than that in the case ofCSVdata because (i) no
parsing is involved and (ii) the binary representation is more
compact than the CSV one. During the first nine queries,
Slalom fine-tunes its partitioning. During Q3, multiple parti-
tions happened to stabilize, thus triggering the construction
of multiple indexes and leading to increased execution over-
head. Both PostgreSQL configurations have stable execution
times as the selectivity remains stable. Eventually, Slalom
and indexed PostgreSQL converge and have similar perfor-
mance. Figure 19 presents the cumulative execution time for
loading, index building, and query execution for the three
systems over binary files. PostgreSQL using indexes requires
more pre-processing time due to index building, and it takes
13 queries to pay off the cost of building the index. Slalom
requires seven queries to start outperforming PostgreSQL,
and after ten queries, it offers comparable performance to
PostgreSQL with indexes. Table 3 presents separately the
time required for loading, index building, and query execu-
tion for the three systems. The additional file adapters enable
Slalom to efficiently and transparently operate on top of addi-
tional data formats.

6 Conclusion

In situ data analysis over large and, crucially, growing
datasets faces performance challenges as more queries are
issued. State-of-the-art in situ query execution reduces the
data-to-insight time. However, as the number of issued
queries is increasing and,more frequently, queries are chang-
ing access patterns (having variable selectivity, projectivity
and are of interest in the dataset), in situ query execution
cumulative latency increases.

To address this, we bring the benefits of indexing to in situ
query processing. We present Slalom, a system that com-
bines an in situ query executor with an online partitioning
and indexing tuner. Slalom takes into account user query
patterns to reduce query time over raw data by partition-
ing raw data files logically and building for each partition
lightweight partition-specific indexes when needed. The
tuner further adapts its decisions on-the-fly to follow any
workload changes and maintains a balance between the
potential performance gains, the effort needed to construct an
index, and the overall memory consumption of the indexes
built.

Acknowledgements We would like to thank the reviewers for their
valuable comments. This work is partially funded by the EU FP7 pro-
gramme (ERC-2013-CoG), Grant No. 617508 (ViDa), the EU FP7

123



Adaptive partitioning and indexing for in situ query processing 589

Table 3 Cost of each phase of
the 40 query sequence on binary
file

System Loading (s) Index build (s) Queries (s) Total (s)

Slalom 0 0 1352 1352

PostgresSQL (with index) 325 165 1264 1754

PostgreSQL (no index) 325 0 1677 2002

Collaborative project Grant No. 317858 (BigFoot), NSF under Grant
No. IIS-1850202, and EU Horizon 2020 research and innovation pro-
gramme Grant No. 650003 (Human Brain project).

Appendix: Derivation of index construction
probability formula

This section provides detailed description of how we derive
the probability function for deciding to build an index over
a logical partition. We expect this section to be useful for
achieving a deeper understanding of the tuning decisions of
Slalom. The derivation begins with the expected cost for-
mula.

E =
T∑

i=1

( i−1∑

j=1

p j · Cuse,idx+
(
1−

i−1∑

j=1

p j

)
·
(
pi · Cbuild,idx

+ (1 − pi ) · Cuse, f s

))

We exchange Cbuild,idx with Cuse, f s + δ as building the
index will cost at least as much as a full scan.

E = T · Cuse, f s −
(
Cuse, f s − Cuse,idx

)
·
( T∑

i=1

i−1∑

j=1

p j

)

+δ ·
( T∑

i=1

pi −
T∑

i=1

pi ·
i−1∑

j=1

p j

)
(6)

We take the first partial derivative of this formula for pi .

∂E

∂ pi
= −

(
Cuse, f s − Cuse,idx

)
·
∂

(∑T
i=1

∑i−1
j=1 p j

)

∂ pi

+δ ·
(

∂
∑T

i=1 pi
∂ pi

−
∂

( ∑T
i=1 pi · ∑i−1

j=1 p j

)

∂ pi

)

(7)

We calculate that:

∂

(∑T
i=1

∑i−1
j=1 p j

)

∂ pi
= (T − i) (8)

and

∂

(∑T
i=1 pi · ∑i−1

j=1 p j

)

∂ pi
=

T−1∑

j=1

p j − pi (9)

Thus, the final derivative becomes:

∂E

∂ pi
= −

(
Cuse, f s − Cuse,idx

)
·
(
T − i

)

+δ ·
(
1 −

T−1∑

j=1

p j − pi

)
(10)

To minimize the expected cost, we solve the equation and
we solve for pi .

∂E

∂ pi
= 0 =>

pi = Cuse, f s − Cuse,idx

δ
· (T − i) −

(
1 −

T−1∑

j=1

p j

)
(11)

References

1. Abad, C.L., Roberts, N., Lu, Y., Campbell, R.H.: A storage-centric
analysis of MapReduce workloads: file popularity, temporal local-
ity and arrival patterns. In: Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), pp. 100–109
(2012)

2. Abouzied, A., Abadi, D.J., Silberschatz, A.: Invisible loading:
access-driven data transfer from raw files into database systems.
In: Proceedings of the International Conference on Extending
Database Technology (EDBT), pp. 1–10 (2013)

3. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and
horizontal partitioning into automated physical database design.
In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 359–370 (2004)

4. Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving
relations for cache performance. In: Proceedings of the Interna-
tional Conference onVery Large Data Bases (VLDB), pp. 169–180
(2001)

5. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.:
NoDB: efficient query execution on raw data files. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data, pp. 241–252 (2012)

6. Alamoudi, A.A., Grover, R., Carey, M.J., Borkar, V.R.: External
data access and indexing inAsterixDB. In: Proceedings of theACM
International Conference on Information and Knowledge Manage-
ment (CIKM), pp. 3–12 (2015)

123



590 M. Olma et al.

7. Alexiou, K., Kossmann, D., Larson, P.-Å.: Adaptive range filters
for cold data: avoiding trips to siberia. Proc. VLDB Endow. 6(14),
1714–1725 (2013)

8. Athanassoulis,M., Ailamaki, A.: BF-Tree: approximate tree index-
ing. Proc. VLDB Endow. 7(14), 1881–1892 (2014)

9. Athanassoulis, M., Idreos, S.: Design tradeoffs of data access
methods. In: Proceedings of theACMSIGMOD International Con-
ference on Management of Data, Tutorial (2016)

10. Athanassoulis, M., Kester, M.S., Maas, L.M., Stoica, R., Idreos,
S., Ailamaki, A., Callaghan, M.: Designing access methods: the
RUM conjecture. In: Proceedings of the International Conference
on Extending Database Technology (EDBT), pp. 461–466 (2016)

11. Athanassoulis, M., Yan, Z., Idreos, S.: UpBit: scalable in-memory
UpdatableBitmap indexing. In: Proceedings of theACMSIGMOD
International Conference on Management of Data (2016)

12. Blanas, S., Wu, K., Byna, S., Dong, B., Shoshani, A.: Parallel data
analysis directly on scientific file formats. In: Proceedings of the
ACMSIGMOD International Conference onManagement of Data,
pp. 385–396 (2014)

13. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7), 422–426 (1970)

14. Borwein, P.B.: On the complexity of calculating factorials. J. Algo-
rithms 6(3), 376–380 (1985)

15. Bruno, N., Chaudhuri, S.: An online approach to physical design
tuning. In: Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pp. 826–835 (2007)

16. Chaudhuri, S., Narasayya, V.R.: An efficient cost-driven index
selection tool for microsoft SQL server. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp.
146–155 (1997)

17. Chen, Y., Alspaugh, S., Katz, R.H.: Interactive analytical process-
ing in big data systems: a cross-industry study of MapReduce
workloads. Proc. VLDB Endow. 5(12), 1802–1813 (2012)

18. Cheng, Y., Rusu, F.: Parallel in-situ data processing with specula-
tive loading. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 1287–1298 (2014)

19. Chou, J.C.-Y., Howison, M., Austin, B., Wu, K., Qiang, J., Bethel,
E.W., Shoshani, A., Rübel, O., Prabhat, Ryne, R.D.: Parallel index
and query for large scale data analysis. In: Proceedings of the
ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 30:1–30:11 (2011)

20. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits
illustrated in the case of the binomial. Biometrika 26(4), 404–413
(1934)

21. DeWitt, D.J., Halverson, A., Nehme, R.V., Shankar, S., Aguilar-
Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query
processing in polybase. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 1255–1266
(2013)

22. Finkelstein, S.J., Schkolnick, M., Tiberio, P.: Physical database
design for relational databases. ACM Trans. Database Syst.
(TODS) 13(1), 91–128 (1988)

23. Furtado, C., Lima, A.A.B., Pacitti, E., Valduriez, P., Mattoso, M.:
Physical and virtual partitioning in OLAP database clusters. In:
Proceedings of theSymposiumonComputerArchitecture andHigh
Performance Computing (SBAC-PAD), pp. 143–150 (2005)

24. Gankidi, V.R., Teletia, N., Patel, J.M., Halverson, A., DeWitt, D.J.:
Indexing HDFS data in PDW: splitting the data from the index.
Proc. VLDB Endow. 7(13), 1520–1528 (2014)

25. Graefe, G., Kuno, H.: Self-selecting, self-tuning, incrementally
optimized indexes. In: Proceedings of the International Conference
on Extending Database Technology (EDBT), pp. 371–381 (2010)

26. Graefe, G., McKenna, W.J.: The volcano optimizer generator:
extensibility and efficient search. In: Proceedings of the IEEE Inter-
national Conference on Data Engineering (ICDE), pp. 209–218
(1993)

27. Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-Mauroux, P.,
Madden, S.: HYRISE: amainmemory hybrid storage engine. Proc.
VLDB Endow. 4(2), 105–116 (2010)

28. Halim, F., Idreos, S., Karras, P., Yap, R.H.C.: Stochastic database
cracking: towards robust adaptive indexing in main-memory
column-stores. Proc. VLDB Endow. 5(6), 502–513 (2012)

29. Härder, T.: Selecting an optimal set of secondary indices. In: Pro-
ceedings of the European Cooperation in Informatics (ECI), pp.
146–160 (1976)

30. Hu,G.,Ma, J.,Huang,B.:High throughput implementationofMD5
algorithm onGPU. In: Proceedings of the International Conference
on Ubiquitous Information Technologies & Applications (ICUT),
pp. 1–5 (2009)

31. Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here are my
data files. Here are my queries. Where are my results? In: Pro-
ceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR), pp. 57–68 (2011)

32. Idreos, S.,Kersten,M.L.,Manegold, S.:Database cracking. In: Pro-
ceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR) (2007)

33. Idreos, S., Kersten, M.L., Manegold, S.: Self-organizing tuple
reconstruction in column-stores. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp.
297–308 (2009)

34. Idreos, S., Manegold, S., Kuno, H., Graefe, G.: Merging what’s
cracked, cracking what’s merged: adaptive indexing in main-
memory column-stores. Proc. VLDBEndow. 4(9), 586–597 (2011)

35. Idreos, S., Zoumpatianos, K., Athanassoulis, M., Dayan, N.,
Hentschel, B., Kester, M.S., Guo, D., Maas, L., Qin, W., Abdul,
W., Sun, Y.: The periodic table of data structures. Bull. IEEE Com-
put. Soc. Tech. Comm. Data Eng. 41(3), 64–75 (2018)

36. Ivanova, M., Kersten, M.L., Manegold, S.: Data vaults: a symbio-
sis between database technology and scientific file repositories.
In: Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM), pp. 485–494 (2012)

37. Jindal, A., Dittrich, J.: Relax and let the database do the partitioning
online. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 65–80 (2011)

38. Kargin, Y., Kersten, M.L., Manegold, S., Pirk, H.: The DBMS—
your big data sommelier. In: Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pp. 1119–1130 (2015)

39. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Com-
petitive randomized algorithms for non-uniform problems. In:
Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 301–309 (1990)

40. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over
heterogeneous data through engine customization. Proc. VLDB
Endow. 9(12), 972–983 (2016)

41. Karpathiotakis, M., Alagiannis, I., Heinis, T., Branco, M., Aila-
maki, A.: Just-in-time data virtualization: lightweight data man-
agement with ViDa. In: Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR) (2015)

42. Karpathiotakis, M., Branco, M., Alagiannis, I., Ailamaki, A.:
Adaptive query processing on RAW data. Proc. VLDB Endow.
7(12), 1119–1130 (2014)

43. Kerrisk, M.: The Linux programming interface: a Linux and UNIX
system programming handbook. No Starch Press, San Francisco
(2010)

44. Kester, M.S., Athanassoulis, M., Idreos, S.: Access path selection
in main-memory optimized data systems: should I scan or should I
probe? In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 715–730 (2017)

45. Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C.,
Choi, A., Erickson, J., Grund, M., Hecht, D., Jacobs, M., Joshi,
I., Kuff, L., Kumar, D., Leblang, A., Li, N., Pandis, I., Robinson,
H., Rorke, D., Rus, S., Russell, J., Tsirogiannis, D., Wanderman-

123



Adaptive partitioning and indexing for in situ query processing 591

Milne, S., Yoder, M.: Impala: a modern, open-source SQL engine
for Hadoop. In: Proceedings of the Biennial Conference on Inno-
vative Data Systems Research (CIDR) (2015)

46. Lightstone, S., Teorey, T.J., Nadeau, T.P.: Physical Database
Design: The Database Professional’s Guide to Exploiting Indexes,
Views, Storage, and More. Morgan Kaufmann, Burlington (2007)

47. López-Blázquez, F.,Mino, B.S.: Binomial approximation to hyper-
geometric probabilities. J. Stat. Plan. Inference 87(1), 21–29
(2000)

48. McCrary, S.: Implementing algorithms to measure common statis-
tics. VLDB J. 8, 1–17 (2015)

49. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S.,
Tolton,M.,Vassilakis, T.:Dremel: interactive analysis ofweb-scale
datasets. Proc. VLDB Endow. 3(1), 330–339 (2010)

50. Moerkotte, G.: Small materialized aggregates: a light weight index
structure for data warehousing. In: Proceedings of the Interna-
tional Conference onVery Large Data Bases (VLDB), pp. 476–487
(1998)

51. Mühlbauer, T., Rödiger, W., Seilbeck, R., Reiser, A., Kemper, A.,
Neumann, T.: Instant loading for main memory databases. Proc.
VLDB Endow. 6(14), 1702–1713 (2013)

52. O’Neil, P.E.: Model 204 architecture and performance. In: Pro-
ceedings of the International Workshop on High Performance
Transaction Systems (HPTS), pp. 40–59 (1987)

53. Papadomanolakis, S., Ailamaki, A.: AutoPart: Automating schema
design for large scientific databases using data partitioning. In:
Proceedings of the International Conference on Scientific and Sta-
tistical Database Management (SSDBM), pp. 383 (2004)

54. Pearson, K.: Contributions to themathematical theory of evolution.
II. Skew variation in homogeneous material. Philos. Trans. R. Soc.
Lond. 186(Part I), 343–424 (1895)

55. Peterson, W.W., Brown, D.T.: Cyclic codes for error detection.
Proc. IRE 49(1), 228–235 (1961)

56. Petraki, E., Idreos, S., Manegold, S.: Holistic indexing in main-
memory column-stores. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (2015)

57. Richter, S., Quiané-Ruiz, J.-A., Schuh, S., Dittrich, J.: Towards
zero-overhead static and adaptive indexing in Hadoop. VLDB J.
23(3), 469–494 (2013)

58. Rivest, R.L.: TheMD5message-digest algorithm. RFC 1321, 1–21
(1992)

59. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: COLT: con-
tinuous on-line database tuning. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp.
793–795 (2006)

60. Schuhknecht, F.M., Jindal, A., Dittrich, J.: The uncracked pieces
in database cracking. Proc. VLDB Endow. 7(2), 97–108 (2013)

61. Sidirourgos,L.,Kersten,M.L.:Column imprints: a secondary index
structure. In: Proceedings of theACMSIGMODInternationalCon-
ference on Management of Data, pp. 893–904 (2013)

62. Sinha, R.R., Mitra, S., Winslett, M.: Bitmap indexes for large
scientific data sets: a case study. In: Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing
(IPDPS) (2006)

63. Sun, L., Franklin, M.J., Krishnan, S., Xin, R.S.: Fine-grained par-
titioning for aggressive data skipping. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp.
1115–1126 (2014)

64. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony,
S., Liu, H.,Wyckoff, P., Murthy, R.: Hive—awarehousing solution
over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–
1629 (2009)

65. Wang, X., Yu, H.: How to break MD5 and other hash functions. In:
Proceedings of the Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT),
pp. 19–35 (2005)

66. Wu, E.,Madden, S.: Partitioning techniques for fine-grained index-
ing. In: Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pp. 1127–1138 (2011)

67. Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-
Michel, E., Geddes, C.,Gu, J., Hagen,H.,Hamann,B.,Koegler,W.,
Lauret, J., Meredith, J., Messmer, P., Otoo, E.J., Perevoztchikov,
V., Poskanzer, A., Rübel, O., Shoshani, A., Sim, A., Stockinger, K.,
Weber, G., Zhang, W.-M.: FastBit: interactively searching massive
data. J. Phys.: Conf. Ser. 180(1), 012053 (2009)

68. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A.,
Garcia-Arellano, C., Fadden, S.: DB2 design advisor: integrated
automatic physical database design. In: Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pp.
1087–1097 (2004)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Adaptive partitioning and indexing for in situ query processing
	Abstract
	1 Introduction
	2 Related work
	3 The SLALOM system
	3.1 Architecture
	3.2 Implementation
	3.3 Query execution
	3.4 Extensibility of Slalom

	4 Continuous partition and index tuning
	4.1 Raw data partitioning
	4.1.1 Homogenous partitioning
	4.1.2 Query-based partitioning

	4.2 Adaptive indexing in Slalom
	4.3 Handling file updates
	4.3.1 Monitoring Files
	4.3.2 Calculating and Storing State
	4.3.3 Recognizing Update Type and Updating Data Structures


	5 Experimental Evaluation
	5.1 Adapting to workload shifts
	5.2 Working under memory constraints
	5.3 Adaptivity efficiency
	5.4 Slalom over real data
	5.5 Slalom handling file updates
	5.5.1 Append-like Updates
	5.5.2 In-place Updates
	5.5.3 Speed-up Checksum Calculation

	5.6 Additional data formats: binary data

	6 Conclusion
	Acknowledgements
	Appendix: Derivation of index construction probability formula
	References




