A Nearly Optimal Lower Bound on the Approximate Degree of AC⁰

Mark Bun Justin Thaler Princeton University Georgetown University

Boolean Functions

$$f: \{-1, 1\}^n \rightarrow \{-1, 1\}$$

where $-1 = \text{TRUE}$ and $+1 = \text{FALSE}$

$$\frac{\text{Ex.}}{\text{AND}_n(x)} = \begin{cases} -1 & \text{if } x = (-1)^n \\ 1 & \text{otherwise} \end{cases}$$

Approximate Degree

[Nisan-Szegedy92]

A real polynomial $p \in$ -approximates Boolean f if $|p(x) - f(x)| \leq \varepsilon$ for all $x \in \{-1, 1\}^n$

 $deg_{\varepsilon}(f) := \min\{d: \text{There is a degree-} d \text{ polynomial} \\ p \text{ that } \varepsilon\text{-approximates } f\}$

 $\widetilde{\deg}(f) := \deg_{1/3}(f)$ is the approximate degree of f

Applications (Upper Bounds)

Learning Algorithms

- $\varepsilon = 1/3$ Agnostic Learning [Kalai-Klivans-Mansour-Servedio05]
- $\varepsilon = 1 2^{-\text{poly}(n)}$ Attribute-Efficient Learning [Klivans-Servedio06, Servedio-Tan-Thaler12]
- $\varepsilon \rightarrow 1$ PAC Learning [Klivans-Servedio03]

Approximate Inclusion-Exclusion

[Kahn-Linial-Samorodnitsky96, Sherstov08]

Differentially Private Query Release

[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]

Formula & Graph Complexity Lower Bounds

[Tal14,16ab]

Applications (Lower Bounds)

Approx. degree lower bounds \Rightarrow lower bounds in

• Quantum Query Complexity

[Beals-Burhman-Cleve-Mosca-deWolf98, Aaronson-Shi02]

Communication Complexity

[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]

• Circuit Complexity

[Minsky-Papert69, Beigel93, Sherstov08]

Oracle Separations [Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16] Secret Sharing Schemes [Bogdanov-Ishai-Viola-Williamson16]

Approximate Degree of AC⁰

 $AC^0 = \{\land, \lor, \neg\}$ -circuits (with unbounded fan-in) of constant depth and polynomial size

Approximate degree lower bounds underlie the best known lower bounds for AC⁰ under:

- > Approximate rank / quantum comm. complexity
- > Multiparty (quantum) comm. complexity
- Discrepancy / margin complexity
- Sign-rank / unbounded error comm. complexity
- > Majority-of-threshold and threshold-of-majority circuit size

Open Problem: What is the approximate degree of AC⁰?

Approximate Degree of AC⁰

Prior work:

Element-Distinctness is a CNF with approximate degree $\Omega(n^{2/3})$ [Aaronson-Shi02]

This work:

<u>Main Theorem:</u> For every $\delta > 0$, there is an AC⁰ circuit with approximate degree $\Omega(n^{1-\delta})$

- Depth = $O(\log(1/\delta))$
- Also applies to DNF of width $(\log n)^{O(\log(1/\delta))}$ (with quasipolynomial size)

Applications of Main Theorem

- An AC⁰ circuit with quantum communication complexity $\Omega(n^{1\text{-}\delta})$

Main Theorem + Pattern Matrix Method [Sherstov07]

Improved secret sharing schemes with reconstruction in AC⁰

Main Theorem + [Bogdanov-Ishai-Viola-Williamson16]

 Nearly optimal separation between certificate complexity and approximate degree

Main Theorem + some actual work

Roadmap

- Story 1: Symmetrization and the [Nisan-Szegedy92] approximate degree of AND
- Story 2: *Dual polynomials* and the [B.-Thaler13 Sherstov13] approximate degree of AND-OR
- Story 3: Hardness amplification in AC⁰
 ⇒ Main Theorem

Approximate Degree of AND_n

Theorem:
$$\widetilde{\deg}(AND_n) = \Theta(n^{1/2})$$
 [Nisan-Szegedy92]

Upper bound: Che

Chebyshev polynomials

Approximate Degree of AND_n

Theorem:
$$\widetilde{\deg}(AND_n) = \Theta(n^{1/2})$$
 [Nisan-Szegedy92]

Upper bound: Chebyshev polynomials

 Q_d (t)

Approximating polynomial:

 $p(x) = Q_d \left(\frac{|x|}{n} = Q_d \left(\frac{1}{2} - \frac{(x_1 + \dots + x_n)}{2n} \right) \right)$

Approximate Degree of AND_n

<u>Theorem</u>: $\widetilde{\deg}(AND_n) = \Theta(n^{1/2})$ [Nisan-Szegedy92]

Lower bound: Symmetrization [Minsky-Papert69]

If $|p(x) - AND_n(x)| \le 1/3$ for all $x \in \{-1, 1\}^n$, then there exists a **univariate** Q with $deg(Q) \le deg(p)$ that looks like:

(Chebyshev polynomials are the extremal case)

 $\Rightarrow \deg(p) \ge \deg(Q) \ge \Omega(n^{1/2})$

Approximate Degree of AND_n

<u>Theorem</u>: $\widetilde{\deg}(AND_n) = \Theta(n^{1/2})$ [Nisan-Szegedy92]

Lower bound: Symmetrization [Minsky-Papert69]

Symmetrization + Approximation Theory gives tight lower bounds for

- Symmetric Boolean functions [Paturi92]
- Element Distinctness [Aaronson-Shi02]

Roadmap

- Story 1: Symmetrization and the [Nisan-Szegedy92] approximate degree of AND
- Story 2: Dual polynomials and the [B.-Thaler13 Sherstov13] approximate degree of AND-OR
- Story 3: Hardness amplification in AC⁰
 ⇒ Main Theorem

The AND-OR Tree

Define AND_n \circ OR_m: {-1, 1}^{nm} \rightarrow {-1, 1} by

<u>Theorem:</u> $\widetilde{\deg}(AND_n \circ OR_m) = \Theta(n^{1/2}m^{1/2})$

Approximate Degree of AND_n \circ **OR**_m **Upper bound:** $\widetilde{\operatorname{deg}}(\operatorname{AND}_n \circ \operatorname{OR}_m) = O(n^{1/2}m^{1/2})$

- Quantum query algorithm [Hoyer-Mosca-deWolf03]
- General proof via robust polynomials [Buhrman-Newman-Röhrig-deWolf03, Sherstov12]
 - <u>Theorem:</u> For any functions f and g, we have

$$\widetilde{\deg}(f \circ g) \leq \mathcal{O}(\widetilde{\deg}(f) \cdot \widetilde{\deg}(g))$$

Given $p \approx f$ and $q \approx g$, is $p \circ q \approx f \circ g$?

Not in general. But *p* can be made *robust to noise* in its inputs (without increasing its degree)

Approximate Degree of AND_n • OR_m Lower bound: $\widetilde{deg}(AND_n \circ OR_m) = \Omega(n^{1/2}m^{1/2})$

 Symmetrization alone does not seem powerful enough

[Nisan-Szegedy92, Shi01, Ambainis03]

• Proof via method of dual polynomials [B.-Thaler13, Sherstov13]

The Method of Dual Polynomials

What is the best error ε to which a degree-d polynomial can approximate f?

Primal LP: min ε $_{p,arepsilon}$ s.t. $|p(x) - f(x)| \le \varepsilon \quad \forall x \in \{-1, 1\}^n$ $\max_{\Psi} \sum_{x \in \{-1,1\}^n} \Psi(x) f(x)$ Dual LP: s.t. $\sum |\Psi(x)| = 1$ $x \in \{-1,1\}^n$ $\deg(p) \le d \implies \sum \Psi(x)p(x) = 0$ $x \in \{-1,1\}^n$

The Method of Dual Polynomials

<u>Theorem:</u> $\deg_{\varepsilon}(f) > d$ if and only if there exists a dual polynomial Ψ such that

1.
$$\sum_{x \in \{-1,1\}^n} |\Psi(x)| = 1$$
 (Ψ has L_1 -norm 1)

2.
$$\deg(p) \le d \implies \sum_{x \in \{-1,1\}^n} \Psi(x)p(x) = 0$$

(Ψ has pure high degree d)

3. $\sum_{x \in \{-1,1\}^n} \Psi(x) f(x) > \varepsilon$ (Ψ has correlation ε with f)

Approximate Degree of AND_n • OR_m Lower bound: $\widetilde{deg}(AND_n \circ OR_m) = \Omega(n^{1/2}m^{1/2})$

Proof idea (explicit in [B.-Thaler13], implicit in [Sherstov13])

- Begin with dual polynomials $\Psi_{\rm AND} \text{ witnessing } \widetilde{\deg}({\rm AND}_n) > n^{1/2} \text{, and}$ $\Psi_{\rm OR} \text{ witnessing } \widetilde{\deg}({\rm OR}_m) > m^{1/2}$
- Combine Ψ_{AND} with Ψ_{OR} to obtain a dual polynomial $\Psi_{\text{AND-OR}}$ for $\text{AND}_n \circ \text{OR}_m$ Uses dual block composition technique

Dual Block Composition

[Shi-Zhu07, Lee09, Sherstov09]

 $\begin{array}{l} \text{Combine dual polynomials } \Psi_f \text{ and } \Psi_g \text{ via} \\ \Psi_{f \circ g}(x) = 2^n \Psi_f(\text{sgn } \Psi_g(x_1), \dots, \text{sgn } \Psi_g(x_n)) \prod_{i=1}^n |\Psi_g(x_i)| \\ & \\ \text{Normalization to ensure} \\ \Psi_{f \circ g} \text{ has } L_1 \text{-norm } 1 \\ \end{array} \\ \begin{array}{l} \text{Booleanization of} \\ (\Psi_g(x_1), \dots, \Psi_g(x_n)) \end{array} \\ \text{Product distribution} \\ |\Psi_g| \text{ x} \dots \text{ x } |\Psi_g| \end{array}$

By complementary slackness, tailored to showing optimality of robust approximations [Thaler14]

Dual Block Composition

[Shi-Zhu07, Lee09, Sherstov09]

Combine dual polynomials Ψ_f and Ψ_g via $\Psi_{f \circ g}(x) = 2^n \Psi_f(\operatorname{sgn} \Psi_g(x_1), \dots, \operatorname{sgn} \Psi_g(x_n)) \prod_{i=1}^n |\Psi_g(x_i)|$

- 1. $\Psi_{f^{o}g}$ has L_1 -norm 1 [Sherstov09]
- 2. $\Psi_{f \circ g}$ has pure high degree d [Sherstov09]
- 3. $f = AND_n$ and $g = OR_m \Rightarrow \Psi_{f \circ g}$ has high correlation with $f \circ g$ [B.-Thaler13, Sherstov13]

Roadmap

- Story 1: Symmetrization and the [Nisan-Szegedy92] approximate degree of AND
- Story 2: *Dual polynomials* and the [B.-Thaler13 Sherstov13] approximate degree of AND-OR
- Story 3: Hardness amplification in AC⁰
 ⇒ Main Theorem

Hardness Amplification in AC⁰

<u>Theorem 1:</u> If $\deg_{-,1/2}(f) > d$, then $\deg_{1/2}(F) > t^{1/2}d$ for $F = OR_t \circ f$ [B.-Thaler13, Sherstov13]

<u>Theorem 2:</u> If $\deg_{-,1/2}(f) > d$, then $\deg_{1-2^{-t}}(F) > d$ for $F = OR_t \circ f$ [B.-Thaler14]

<u>Theorem 3:</u> If $\deg_{-,1/2}(f) > d$, then $\deg_{\pm}(F) > \min\{t, d\}$ for $F = OR_t \circ f$ [Sherstov14]

<u>Theorem 4:</u> If $\deg_{+,1/2}(f) > d$, then $\deg_{1-2^{-t}}(F) > d$ for $F = \text{ODD-MAX-BIT}_t \circ f$ [Thaler14]

<u>Theorem 5:</u> If $\deg_{1/2}(f) > d$, then $\deg_{\pm}(F) > \min\{t, d\}$ for $F = \text{APPROX-MAJ}_t \circ f$ [Bouland-Chen-Holden-Thaler-Vasudevan16]

Hardness Amplification in AC⁰

<u>Theorem Template:</u> If f is "hard" to approximate by low-degree polynomials, f ... fthen $F = g \circ f$ is "even harder" to // f ... fapproximate by low-degree polynomials x_1 x_n

Block Composition Barrier

Robust approximations, i.e.,

$$\widetilde{\deg}(g \circ f) \le \mathcal{O}(\widetilde{\deg}(g) \bullet \widetilde{\deg}(f))$$

imply that block composition cannot increase approximate degree as a function of n

This Work: A New Hardness Amplification Theorem for Degree

<u>Theorem</u>: If $f: \{-1, 1\}^n \rightarrow \{-1, 1\}$

- is computed by a depth- $k\,$ AC^0 circuit, and
- has approximate degree $\geq d$,

then there exists $F : \{-1, 1\}^{n \operatorname{polylog}(n)} \rightarrow \{-1, 1\}$ that

- is computed by a depth-(k+3) AC⁰ circuit, and
- has approximate degree $\geq \Omega(d^{2/3} \cdot n^{1/3})$

Remarks:

- Recursive application yields Main Theorem
- Analogous result for (monotone) DNF

Around the Block Composition Barrier

Prior work:

- Hardness amplification "from the top"
- Block composed functions

This work:

- Hardness amplification "from the bottom"
 - Non-block-composed functions

Case Study: SURJECTIVITY

For $N \ge R$, define $SURJ_{N,R} : [R]^N \rightarrow \{-1, 1\}$ by

$$\begin{aligned} \mathsf{SURJ}_{N,R}(s_1,\,...,\,s_N) &= -1 & \text{iff} \\ \text{For every } r \in [R] \text{, there exists an index } i \text{ s.t. } s_i &= r \end{aligned}$$

- Corresponds to a Boolean function on $O(N \log_2 R)$ bits
- Has nearly maximal quantum query complexity $\Omega(R)$ [Beame-Machmouchi10]
- Exactly the outcome of hardness amplification construction applied to $f = AND_R$

Getting to Know SURJECTIVITY

$$\begin{aligned} \mathsf{SURJ}_{N,R}(s_1,\,...,\,s_N) &= -1 & \text{iff} \\ \text{For every } r \in [R] \text{, there exists an index } i \text{ s.t. } s_i &= r \end{aligned}$$

Define auxiliary variables

$$y_{r,i}(s) = \begin{cases} -1 & \text{if } s_i = r \\ 1 & \text{otherwise} \end{cases} \xrightarrow{\text{OR}_N \dots \text{OR}_N \\ y_{11} \dots y_{1N} & y_{R1} \dots y_{RN} \\ y_{11} \dots & y_{1N} & y_{R1} \dots & y_{RN} \\ \vdots & \vdots & \vdots & \vdots \\ ND_R(\text{OR}_N(y_{11}, \dots, y_{1N}), \dots, \text{OR}_N(y_{R1}, \dots, y_{RN})) \end{cases}$$

SURJECTIVITY Illustrated (N=6, R=3) AND₃ OR_6 OR_6 OR_6 y_{11} y_{12} y_{21} y_{33} y_{35} y_{36} y_{13} y_{14} y_{15} y_{16} y_{22} y_{23} y_{24} y_{25} y_{26} y_{34} y_{31} y_{32} (Each $s_i \in [R]$) S_2 S_1 S_3 s_4 S_5 S_6

SURJECTIVITY Illustrated (N=6, R=3) AND_3 OR_6 OR_6 OR_6 -1 -1 -1 -1 -1 -1

Getting to Know SURJECTIVITY

General Hardness Amplification Construction

Fails dramatically for $f = OR_R!$ (F(s) identically -1)

General Hardness Amplification Construction

Remainder of This Talk: Lower Bound for SURJECTIVITY

Overview of SURJECTIVITY Lower Bound

<u>Theorem</u>: For some N = O(R),

$$\widetilde{\operatorname{deg}}(\mathsf{SURJ}_{N,R}) = \Omega(R^{2/3}) = \Omega(\widetilde{\operatorname{deg}}(\mathsf{AND}_R)^{2/3} \cdot R^{1/3})$$

(New proof of result of [Aaronson-Shi01, Ambainis03])

Stage 1: Apply symmetrization to reduce to

Builds on [Ambainis03]

<u>Claim</u>: $\widetilde{\deg}(AND_R \circ OR_N) = \Omega(R^{2/3})$ even under the promise that $|x| \le N$

Stage 2: Prove Claim via method of dual polynomials

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08]

Details of Stage 1

Goal: Transform

 $p \approx \mathrm{SURJ}_{N,R} \quad \text{into} \quad q \approx \mathrm{AND}_R \, \mathbf{o} \; \mathrm{OR}_N \, \mathrm{for} \; |x| \leq N,$ such that $\mathrm{deg}(q) \leq \mathrm{deg}(p)$

a) Symmetrize p to obtain P which depends only on Hamming weights $|y_1|,...,|y_R|$ ${}_{\rm [Ambainis03]}$

$$(s_{1}, ..., s_{N}) \in [R]^{N} \text{ iff } |y_{1}| + ... + |y_{R}| = N \xrightarrow{\text{AND}_{R}} OR_{N} \cdots OR_{N}$$

b) Let $q(x) = P(|x_{1}|, ..., |x_{R}|) \xrightarrow{\text{OR}_{N} \cdots y_{1N}} y_{11} \cdots y_{1N} \cdots y_{R1} \cdots y_{RN}$

Details of Stage 2

<u>Claim</u>: $\widetilde{\deg}(AND_R \circ OR_N) = \Omega(R^{2/3})$ even under the promise that $|x| \le N$

is equivalent to

There exists a dual polynomial witnessing $\widetilde{\deg}(\mathsf{AND}_R \mathsf{o}\,\mathsf{OR}_N)$ = $\Omega(R^{2/3})$ which is supported on inputs with $|x| \leq N$

Does the dual polynomial we already constructed for $AND_R o OR_N$ satisfy this property? **NO**

Fixing the AND-OR Dual Polynomial

 $R_{\rm c}$

 $\Psi_{\text{AND-OR}}(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}(x_1), \dots, \operatorname{sgn} \Psi_{\text{OR}}(x_R)) \prod_{i=1} |\Psi_{\text{OR}}(x_i)|$

 $\begin{array}{l} \Psi_{\mathrm{OR}} \mbox{ must be nonzero for inputs with} \\ \mbox{Hamming weight up to } \Omega(N) \\ \Rightarrow \Psi_{\mathrm{AND-OR}} \mbox{ nonzero up to Hamming weight } \Omega(RN) \end{array}$

- 1. $\Psi_{\rm AND\text{-}OR}$ has $L_1\text{-}{\rm norm}\;1$
- 2. $\Psi_{\text{AND-OR}}$ has pure high degree $\Omega(R^{1/2}N^{1/2}) = \Omega(R)$ 🗸
- 3. $\Psi_{\rm AND\text{-}OR}$ has high correlation with ${\rm AND}_R\,{\rm o}\;{\rm OR}_N\,{\checkmark}$
- 4. $\Psi_{\text{AND-OR}}$ is supported on inputs with $|x| \leq N$

Fixing the AND-OR Dual Polynomial

R

 $\Psi_{\text{AND-OR}}(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}(x_1), \dots, \operatorname{sgn} \Psi_{\text{OR}}(x_R)) \prod_{i=1} |\Psi_{\text{OR}}(x_i)|$

$$\begin{split} \Psi_{\rm OR} \ \textit{must} \ \text{be nonzero for inputs with} \\ \text{Hamming weight up to } \Omega(N) \\ \Rightarrow \Psi_{\rm AND-OR} \ \text{nonzero up to Hamming weight} \ \Omega(RN) \end{split}$$

Fix 1: Trade pure high degree of $\Psi_{\rm OR}$ for "support" size

Fix 2: Zero out high Hamming weight inputs to $\Psi_{\rm AND\text{-}OR}$

Fix 1: Trading PHD for Support Size

For every integer $1 \le k \le N$, there is a dual polynomial Ψ_{OR}^k for OR_N which

- has pure high degree $\Omega(k^{1/2})$
- is supported on inputs of Hamming weight $\leq k$

 $\Psi_{\text{AND-OR}}^k(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}^k(x_1), \dots, \operatorname{sgn} \Psi_{\text{OR}}^k(x_R)) \prod_{i=1}^R |\Psi_{\text{OR}}^k(x_i)|$

Dual polynomial $\Psi^k_{ ext{AND-OR}}$

- has pure high degree $\Omega(R^{1/2} k^{1/2})$
- is supported on inputs of Hamming weight $\leq kN$

Fix 2: Zeroing Out High Hamming Weight Inputs

Dual polynomial $\Psi^k_{ ext{AND-OR}}$

- has pure high degree $\Omega(R^{1/2} k^{1/2})$
- is supported on inputs of Hamming weight $\leq kN$

Suppose further that
$$\sum_{|x|>N} |\Psi_{AND-OR}^k(x)| \ll \operatorname{negl}(R)$$

Can we post-process Ψ^k_{AND-OR} to zero out inputs with Hamming weight $N < |x| \le kN$... YES (Follows from

[Razborov-Sherstov-08])

...without ruining

- pure high degree of $\Psi^k_{\mathrm{AND-OR}}$
- correlation between Ψ^k_{AND-OR} and $AND_R \circ OR_N$?

Fix 2: Zeroing Out High Hamming Weight Inputs

<u>Technical Lemma</u> (follows from [Razborov-Sherstov08]) If 0 < D < N and

$$\sum_{|x|>N} |\Psi^k_{\text{AND-OR}}(x)| \ll 2^{-D},$$

then there exists a "correction term" $\Psi^k_{
m corr}$ that

- 1. Agrees with $\Psi^k_{\text{AND-OR}}$ inputs of Hamming weight >N
- **2.** Has L_1 -norm 0.01
- 3. Has pure high degree D

Fix 2: Zeroing Out High Hamming Weight Inputs

<u>Claim</u>: For $1 \le k \le N$,

$$\sum_{|x|>N} |\Psi_{\text{AND-OR}}^k(x)| \ll 2^{-R/k}$$

Proof idea:

 Ψ_{OR}^k can be made "weakly biased" toward low Hamming weight inputs: For all t > 0, $\sum_{|x|=t} |\Psi_{\mathrm{OR}}^k(t)| \lesssim \frac{1}{t^2}$

 $\Rightarrow \text{``Worst'' high Hamming weight inputs look like} |x_1| = k, ..., |x_{R/k}| = k, |x_{(R/k)+1}| = 0, ..., |x_R| = 0$ $\Psi_{\text{AND-OR}}^k(x) = 2^R \Psi_{\text{AND}}(\operatorname{sgn} \Psi_{\text{OR}}^k(x_1), \dots, \operatorname{sgn} \Psi_{\text{OR}}^k(x_R)) \prod_{i=1}^R |\Psi_{\text{OR}}^k(x_i)|$

Weight on such inputs looks like $k^{-R/k}$

Putting the Pieces Together

Recap of SURJECTIVITY Lower Bound

Theorem: For some N = O(R),

$$\widetilde{\operatorname{deg}}(\mathsf{SURJ}_{N,R}) = \Omega(R^{2/3}) = \Omega(\widetilde{\operatorname{deg}}(\mathsf{AND}_R)^{2/3} \cdot R^{1/3})$$

(New proof of result of [Aaronson-Shi01, Ambainis03])

Stage 1: Apply symmetrization to reduce to 🖌 Builds on

<u>Claim</u>: $\widetilde{\deg}(AND_R \circ OR_N) = \Omega(R^{2/3})$ even under the promise that $|x| \leq N$

Stage 2: Prove Claim via method of dual polynomials

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08]

Conclusions I: Upcoming Work

This work: New degree amplification theorem

 \Rightarrow almost optimal approx. degree lower bound for AC⁰

Upcoming work [B.-Thaler-Kothari]: Quantitative refinement to hardness amplification theorem, with applications

• $\widetilde{\deg}(\mathsf{SURJ}_{N,R}) = \Omega(R^{3/4})$

Matches upper bound of Sherstov

 Nearly tight approx. degree / quantum query lower bounds for k-distinctness, junta testing, statistical distance, entropy comparison

Conclusions II: Open Problems

- Is there an AC⁰ function with approximate degree $\Omega(n)$? A polynomial size DNF?
- Can we obtain similar bounds for ε close to 1? <u>Conjecture:</u> There exists $f \in AC^0$ with $\deg_{\varepsilon}(f) = \Omega(n^{1-\delta})$ even for $\varepsilon = 1 - 2^{-n^{1-\delta}}$
- What is the approx. degree of APPROX-MAJ? [Srinivasan]

Thank you!