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Boolean Functions 

f : {-1, 1}n à {-1, 1} 
 where   -1 = TRUE  and    +1 = FALSE 

 
 
Ex.      

  ANDn(x ) =  
 

{ -1  if  x = (-1)n 

 1  otherwise 



Approximate Degree  
[Nisan-Szegedy92] 

A real polynomial p ε-approximates Boolean f  if 
  |p (x ) – f (x )| ≤ ε  for all  x ∈ {-1, 1}n  

 
degε(f ) := min{d : There is a degree-d polynomial 

         p that ε-approximates f } 
 
deg(f ) := deg1/3(f )  is the approximate degree of f ~ 



Applications (Upper Bounds) 
Learning Algorithms 

 ε = 1/3      Agnostic Learning [Kalai-Klivans-Mansour-Servedio05] 

 ε = 1–2-poly(n)   Attribute-Efficient Learning 
        [Klivans-Servedio06, Servedio-Tan-Thaler12] 

 ε à 1    PAC Learning [Klivans-Servedio03] 
 

Approximate Inclusion-Exclusion 
 [Kahn-Linial-Samorodnitsky96, Sherstov08] 

Differentially Private Query Release 
 [Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14] 

Formula & Graph Complexity Lower Bounds 
 [Tal14,16ab] 

 
 

 



Applications (Lower Bounds) 

Approx. degree lower bounds ⇒ lower bounds in 
•  Quantum Query Complexity 

   [Beals-Burhman-Cleve-Mosca-deWolf98, Aaronson-Shi02] 

•  Communication Complexity 
    [Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,…] 

•  Circuit Complexity 
    [Minsky-Papert69, Beigel93, Sherstov08] 

 
Oracle Separations [Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16] 

Secret Sharing Schemes [Bogdanov-Ishai-Viola-Williamson16] 



Approximate Degree of AC0 
AC0  = {∧,∨,-}-circuits (with unbounded fan-in) of     

  constant depth and polynomial size 
 
Approximate degree lower bounds underlie the best 
known lower bounds for AC0 under: 

Ø Approximate rank / quantum comm. complexity 
Ø Multiparty (quantum) comm. complexity 
Ø Discrepancy / margin complexity 
Ø Sign-rank / unbounded error comm. complexity 
Ø Majority-of-threshold and threshold-of-majority circuit size 

 
Open Problem: What is the approximate degree of AC0?  



Approximate Degree of AC0 

Prior work: 
Element-Distinctness is a CNF with approximate 
degree Ω(n2/3)  [Aaronson-Shi02] 

 
This work: 
Main Theorem: For every δ  > 0, there is an AC0 circuit 
with approximate degree Ω(n1-δ) 

•  Depth = O(log(1/δ)) 
•  Also applies to DNF of width (log n)O(log(1/δ)) 

 (with quasipolynomial size) 

 



Applications of Main Theorem 

•  An AC0 circuit with quantum communication 
complexity Ω(n1-δ) 

  Main Theorem + Pattern Matrix Method [Sherstov07] 
 

•  Improved secret sharing schemes with 
reconstruction in AC0 

   Main Theorem + [Bogdanov-Ishai-Viola-Williamson16] 
 

•  Nearly optimal separation between certificate 
complexity and approximate degree 

  Main Theorem + some actual work 



Roadmap 

•  Story 1: Symmetrization and the 
       approximate degree of AND 

•  Story 2: Dual polynomials and the 
       approximate degree of AND-OR 

•  Story 3: Hardness amplification in AC0  
         ⇒ Main Theorem 

[Nisan-Szegedy92] 

[B.-Thaler13 
Sherstov13] 



Approximate Degree of ANDn 

Td (t) Qd (t) 

Affine 
Transformation 

Theorem:   deg(ANDn) = Θ(n1/2) [Nisan-Szegedy92] 
 

Upper bound:   Chebyshev polynomials 

~ 



Approximating polynomial: 
 p(x ) = Qd (|x |/n) = Qd (1/2 – ((x 1 + … + x n)/2n)) 

 

For d = O(n1/2):  
 
Qd (t) ∈ [2/3, 4/3] for all t ∈ [0, 1–1/n] 
 

Qd (1) = -1 

Theorem:   deg(ANDn) = Θ(n1/2) [Nisan-Szegedy92] 
 

Upper bound:   Chebyshev polynomials 

~ 

Qd (t) 

Approximate Degree of ANDn 



Theorem:   deg(ANDn) = Θ(n1/2) [Nisan-Szegedy92] 
 

Lower bound:   Symmetrization [Minsky-Papert69] 

If |p(x ) – ANDn(x )| ≤ 1/3 for all x ∈ {-1, 1}n, then there 
exists a univariate Q with deg(Q ) ≤ deg(p ) that looks like: 

~ 
Approximate Degree of ANDn 

Markov’s Inequality: 
 

  max Q’(t) ≤ (deg(Q))2 � max|Q(t)| 
 
 

(Chebyshev polynomials are the extremal case) 
 

  ⇒ deg(p) ≥ deg(Q) ≥ Ω(n1/2) 

[0,1] [0,1] Q’(1) ≈ n/2 



Theorem:   deg(ANDn) = Θ(n1/2) [Nisan-Szegedy92] 
 

Lower bound:   Symmetrization [Minsky-Papert69] 

~ 
Approximate Degree of ANDn 

Symmetrization + Approximation Theory gives 
tight lower bounds for 
 
•  Symmetric Boolean functions [Paturi92] 

•  Element Distinctness [Aaronson-Shi02] 



Roadmap 

•  Story 1: Symmetrization and the 
       approximate degree of AND 

•  Story 2: Dual polynomials and the 
       approximate degree of AND-OR 

•  Story 3: Hardness amplification in AC0  
         ⇒ Main Theorem 

[Nisan-Szegedy92] 

[B.-Thaler13 
Sherstov13] 



~ 

Define ANDn ¢ ORm : {-1, 1}nm à {-1, 1} by 
 

ANDn 
 

ORm       …     ORm 

 
x1                    xn 

 
Theorem: deg(ANDn ¢ ORm) = Θ(n1/2m1/2)  
 
 
 
 
 
  

The AND-OR Tree 



Approximate Degree of ANDn ¢ ORm  

Upper bound:  deg(ANDn¢ ORm) = O(n1/2m1/2)  
•  Quantum query algorithm [Hoyer-Mosca-deWolf03] 

•  General proof via robust polynomials 
   [Buhrman-Newman-Röhrig-deWolf03, Sherstov12] 

 

     Theorem: For any functions f and g, we have  
     

    deg(f ¢ g) ≤ O(deg(f ) � deg(g)) 
 
 
 
  

~ 

Given p ≈ f  and q ≈ g,     is      p ¢ q  ≈ f ¢ g? 

Not in general. But p can be made robust to 
noise in its inputs (without increasing its degree)  

~ ~ ~ 



Lower bound:  deg(ANDn¢ ORm) = Ω(n1/2m1/2)  
 
•  Symmetrization alone does not seem 

powerful enough 
 [Nisan-Szegedy92, Shi01, Ambainis03] 

 
 

•  Proof via method of dual polynomials 
[B.-Thaler13, Sherstov13] 

 
 
 
 
  

~ 
Approximate Degree of ANDn ¢ ORm  



The Method of Dual Polynomials 
What is the best error ε to which a degree-d 

polynomial can approximate f ? 

s.t. 

Dual LP: 
 

s.t. 

Primal LP: 
 



The Method of Dual Polynomials 

 

1.               (Ψ has L1-norm 1) 

2.                            
                (Ψ has pure high degree d ) 

 

3.              (Ψ has correlation ε with f ) 

Theorem: degε(f ) > d if and only if there exists a 
dual polynomial Ψ such that 



Lower bound:  deg(ANDn¢ ORm) = Ω(n1/2m1/2)  
 

Proof idea (explicit in [B.-Thaler13], implicit in [Sherstov13]) 
•  Begin with dual polynomials 

 ΨAND witnessing deg(ANDn) > n1/2, and 

 ΨOR    witnessing deg(ORm) > m1/2 
 

•  Combine ΨAND with ΨOR to obtain a dual 
polynomial ΨAND-OR for ANDn¢ ORm 

       Uses dual block composition technique 

 
  

~ 
Approximate Degree of ANDn ¢ ORm  

~ 
~ 



Dual Block Composition 
[Shi-Zhu07, Lee09, Sherstov09] 

Combine dual polynomials Ψf and Ψg via 

By complementary slackness, tailored to showing 
optimality of robust approximations [Thaler14]  

Normalization to ensure 
Ψf ¢g has L1-norm 1 

Booleanization of 
(Ψg(x1), …, Ψg(xn)) 

Product distribution 
|Ψg| x … x |Ψg| 



Dual Block Composition 
[Shi-Zhu07, Lee09, Sherstov09] 

Combine dual polynomials Ψf and Ψg via 

1.  Ψf ¢g has L1-norm 1  [Sherstov09] 

2.  Ψf ¢g has pure high degree d  [Sherstov09]  

3.  f = ANDn and g = ORm ⇒ Ψf ¢g has high 
correlation with f ¢ g   [B.-Thaler13, Sherstov13]  



Roadmap 

•  Story 1: Symmetrization and the 
       approximate degree of AND 

•  Story 2: Dual polynomials and the 
       approximate degree of AND-OR 

•  Story 3: Hardness amplification in AC0  
         ⇒ Main Theorem 

[Nisan-Szegedy92] 

[B.-Thaler13 
Sherstov13] 



Hardness Amplification in AC0 

Theorem 1: If deg–,1/2(f ) > d, then deg1/2(F ) > t1/2d  
for F = ORt ¢ f  [B.-Thaler13, Sherstov13] 
 

Theorem 2: If deg–,1/2(f ) > d, then deg     (F ) > d  
for F = ORt ¢ f  [B.-Thaler14] 
 

Theorem 3: If deg–,1/2(f ) > d, then deg±(F ) > min{t, d} 
for F = ORt ¢ f  [Sherstov14] 
 

Theorem 4: If deg+,1/2(f ) > d, then deg    (F ) > d 
for F = ODD-MAX-BITt ¢ f  [Thaler14] 
 

Theorem 5: If deg1/2(f ) > d, then deg±(F ) > min{t, d} 
for F = APPROX-MAJt ¢ f  [Bouland-Chen-Holden-Thaler-Vasudevan16] 

 
 

1–2-t 

1–2-t 



Hardness Amplification in AC0 

1–2-t 

1–2-t Theorem Template: If f  is “hard” to  
approximate by low-degree polynomials, 
then F = g ¢ f is “even harder” to  
approximate by low-degree polynomials 

g

f f

x1 xn 

… 

1–2-t 

Block Composition Barrier 
 
 
 
 

Robust approximations, i.e., 
 

deg(g ¢ f ) ≤ O(deg(g) � deg(f )) 
 

imply that block composition cannot increase approximate 
degree as a function of n 

~ ~ ~ 



This Work: A New Hardness 
Amplification Theorem for Degree 

Theorem: If f : {-1, 1}n à {-1, 1} 
•  is computed by a depth-k  AC0 circuit, and 
•  has approximate degree ≥ d, 

then there exists F : {-1, 1}n polylog(n) à {-1, 1} that 
•  is computed by a depth-(k + 3) AC0 circuit, and 
•  has approximate degree ≥ Ω(d 

2/3 � n1/3) 
 
Remarks: 
•  Recursive application yields Main Theorem 
•  Analogous result for (monotone) DNF 
 



Around the Block Composition Barrier 

Prior work:  
•  Hardness amplification “from the top” 
•  Block composed functions 

This work: 
•  Hardness amplification “from the bottom” 

•  Non-block-composed functions 

g

f f 

x1 xn 

… 

f 

g g… 



Case Study: SURJECTIVITY 

For N ≥ R, define SURJN,R : [R]N à {-1, 1} by 
 
SURJN,R(s1, …, sN) = -1   iff 

 For every r ∈[R], there exists an index i s.t. si = r 
 
•  Corresponds to a Boolean function on O(N log2R) bits 
•  Has nearly maximal quantum query complexity Ω(R) 

 [Beame-Machmouchi10] 

•  Exactly the outcome of hardness amplification 
construction applied to f = ANDR 



Getting to Know SURJECTIVITY 
SURJN,R(s1, …, sN) = -1   iff 

 For every r ∈[R], there exists an index i s.t. si = r 
 

Define auxiliary variables 
 

 yr,i(s ) = 
 
 
Then SURJN,R(s1, …, sN) = 

 ANDR ( ORN (y11, …, y1N), …, ORN (yR1, …, yRN) ) 

{ -1  if  si = r 
 1   otherwise 

ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 



s1 s2 s3 s4 s5 s6 

y11 y12 y13 y14 y15 y16 y21 y22 y23 y24 y25 y26 y31 y32 y33 y34 y35 y36 

(Each sj ∈ [R ]) 

AND3 

OR6 OR6 OR6 

SURJECTIVITY Illustrated (N=6, R=3) 



2 1 2 1 3 3 

AND3 

OR6 OR6 OR6 

1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 

SURJECTIVITY Illustrated (N=6, R=3) 



Getting to Know SURJECTIVITY 
SURJN,R(s1, …, sN) = -1   iff 

 For every r ∈[R], there exists an index i s.t. si = r 
 

Define auxiliary variables 
 

 yr,i(s ) = 
 
 
Then SURJN,R(s1, …, sN) = 

 ANDR ( ORN (y11, …, y1N), …, ORN (yR1, …, yRN) ) 

{ -1  if  si = r 
 1   otherwise 

Observation: To approximate SURJN,R, 
it suffices to approximate ANDR ¢ ORN 

on inputs of Hamming weight N  
ANDR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 



General Hardness 
Amplification Construction 

Natural generalization for an 
    arbitrary f : {-1, 1}R à {-1, 1} 
 
 
F (s1, …, sN) = 

 f ( ORN (y11, …, y1N), …, ORN (yR1, …, yRN) ) 
 
Fails dramatically for f = ORR!  (F (s ) identically -1) 

fR  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 



General Hardness 
Amplification Construction 

Actual generalization for an 
    arbitrary f : {-1, 1}R/logN à {-1, 1} 
 
Fix: Force a level of alternation 
 
 
F (s1, …, sN) = 
  (f ¢ ANDlogN)(ORN (y11, …, y1N), …, ORN (yR1, …, yRN)) 

ANDlogN ANDlogN 

fR/ logN  

ORN 

y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1              …                sN 



Remainder of This Talk: 
Lower Bound for SURJECTIVITY 



Overview of SURJECTIVITY Lower Bound 

Theorem: For some N = O(R), 
   deg(SURJN,R) = Ω(R2/3) = Ω(deg(ANDR)2/3 �R1/3) 

(New proof of result of [Aaronson-Shi01, Ambainis03]) 
 

~ ~ 

~ 
Stage 1: Apply symmetrization to reduce to 
 

 Claim: deg(ANDR ¢ ORN) = Ω(R2/3) even under the  
 promise that |x | ≤ N 

Builds on 
[Ambainis03] 

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08] 

Stage 2: Prove Claim via method of dual polynomials 
 



Details of Stage 1 
Goal: Transform 

 p ≈ SURJN,R   into   q ≈ ANDR ¢ ORN for |x | ≤ N, 
such that deg(q) ≤ deg(p) 
 
a)  Symmetrize p to obtain P which depends only on 

Hamming weights |y1|, …, |yR| [Ambainis03] 

 
 
b)  Let q(x ) = P(|x1|, …, |xR|) 

 
(s1, …, sN) ∈ [R]N   iff   |y1|+ … + |yR| = N  

 
ANDR  

ORN 
y11   …   y1N 
 

yR1   …   yRN 
 

… ORN 

s1        …              sN 



Details of Stage 2 

Claim: deg(ANDR ¢ ORN) = Ω(R2/3) even under the  
promise that |x | ≤ N 
 

is equivalent to 
 

There exists a dual polynomial witnessing 
deg(ANDR ¢ ORN) = Ω(R2/3) which is supported on 
inputs with |x | ≤ N 
 
 
Does the dual polynomial we already constructed 
for ANDR ¢ ORN satisfy this property? 
 

NO 

~ 

~ 



Fixing the AND-OR Dual Polynomial 

ΨOR must be nonzero for inputs with 
Hamming weight up to Ω(N ) 

 ⇒ΨAND-OR nonzero up to Hamming weight Ω(RN ) 

1.  ΨAND-OR has L1-norm 1   
2.  ΨAND-OR has pure high degree Ω(R1/2N1/2) = Ω(R)  
3.  ΨAND-OR has high correlation with ANDR ¢ ORN 
4.  ΨAND-OR is supported on inputs with |x | ≤ N 

✓ 
✓ 

✓ 
✗ 



Fixing the AND-OR Dual Polynomial 

ΨOR must be nonzero for inputs with 
Hamming weight up to Ω(N ) 

 ⇒ΨAND-OR nonzero up to Hamming weight Ω(RN ) 

Fix 1: Trade pure high degree of ΨOR for “support” size 
 
Fix 2: Zero out high Hamming weight inputs to ΨAND-OR 



Fix 1: Trading PHD for Support Size 

For every integer 1 ≤ k ≤ N, there is a dual 
polynomial ΨOR for ORN which 
•  has pure high degree Ω(k1/2)  
•  is supported on inputs of Hamming weight ≤ k  

 

Dual polynomial ΨAND-OR  
•  has pure high degree Ω(R1/2 k1/2)  
•  is supported on inputs of Hamming weight ≤ kN  
 

k k k k 

k

k



Fix 2: Zeroing Out High 
Hamming Weight Inputs  

Dual polynomial ΨAND-OR  
•  has pure high degree Ω(R1/2 k1/2)  
•  is supported on inputs of Hamming weight ≤ kN  
 

Can we post-process ΨAND-OR to zero out inputs with 
Hamming weight N < |x | ≤ kN… 
…without ruining 
•  pure high degree of ΨAND-OR  
•  correlation between ΨAND-OR and ANDR ¢ ORN? 

Suppose further that 

 
YES (Follows from 
[Razborov-Sherstov-08]) 

 

k

k

k

k



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

Technical Lemma (follows from [Razborov-Sherstov08]) 
If 0 < D < N and  
 
 
 
then there exists a “correction term” Ψcorr that 
1.  Agrees with ΨAND-OR inputs of Hamming weight >N  
2.  Has L1-norm 0.01 
3.  Has pure high degree D  

2-D, 

k

k



Fix 2: Zeroing Out High 
Hamming Weight Inputs 

Claim: For 1 ≤ k ≤ N, 

Weight on such inputs looks like k–R/k 

  

k k k k 

Proof idea: 
ΨOR can be made “weakly biased” toward low 
Hamming weight inputs:   For all t > 0, 
 
⇒ “Worst” high Hamming weight inputs look like 
|x1| = k, …, |xR/k | = k, |x(R/k)+1| = 0, …, |xR| = 0 
 
 

k
k 



Putting the Pieces Together 
Dual polynomial ΨAND-OR            Fix 1 
•  has pure high degree Ω(R1/2 k1/2)  
•  satisfies 
 

Correction term Ψcorr             Fix 2 
•  has pure high degree Ω(R/k)  
•  agrees with ΨAND-OR inputs of Hamming weight >N  
 

Balanced at k = R1/3 

     ⇒ PHD Ω(R2/3) 

k

k

k

 
1.  L1-norm ≈ 1 
2.  high correlation with ANDR ¢ ORN 

3.  pure high degree Ω(min{R1/2k1/2, R/k}) 
4.  support on inputs with |x | ≤ N 

⇒ΨAND-OR = ΨAND-OR – Ψcorr  has k k 



Recap of SURJECTIVITY Lower Bound 

Theorem: For some N = O(R), 
   deg(SURJN,R) = Ω(R2/3) = Ω(deg(ANDR)2/3 �R1/3) 

(New proof of result of [Aaronson-Shi01, Ambainis03]) 
 

~ ~ 

~ 
Stage 1: Apply symmetrization to reduce to 
 

 Claim: deg(ANDR ¢ ORN) = Ω(R2/3) even under the  
 promise that |x | ≤ N 

Builds on 
[Ambainis03] 

Refines AND-OR dual polynomial w/ techniques of [Razborov-Sherstov08] 

Stage 2: Prove Claim via method of dual polynomials 
 

✓ 

✓ 



Conclusions I: Upcoming Work 
This work: New degree amplification theorem 
       ⇒ almost optimal approx. degree lower bound for AC0 

 

Upcoming work [B.-Thaler-Kothari]: Quantitative refinement to 
hardness amplification theorem, with applications 
•  deg(SURJN,R) = Ω(R3/4)        

 Matches upper bound of Sherstov 
 

•  Nearly tight approx. degree / quantum query lower 
bounds for k-distinctness, junta testing, statistical 
distance, entropy comparison 

~ 



Conclusions II: Open Problems 

•  Is there an AC0 function with approximate 
degree Ω(n)?    A polynomial size DNF?  

•  Can we obtain similar bounds for ε close to 1? 
  Conjecture: There exists f ∈ AC0 with  
  degε(f ) = Ω(n1-δ) even for ε = 1 – 2 

 

•  What is the approx. degree of APPROX-MAJ? 
[Srinivasan] 

 
 

Thank you! 

–n1-δ 


