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Boolean Functions

m Boolean function f: {-1,1}" — {-1,1}

) ~1 (TRUE) ifz=(-1)"

AND, (x) =
(=) {1 (FALSE)  otherwise



Approximate Degree

m A real polynomial p e-approximates a Boolean function f if
ple) ~ fl@)| <c Vae{-1,1)"

[ (/fa_ég(f) = minimum degree needed to e-approximate f

] (T@E(f) = 5%1/2@) is the approximate degree of f
m E.g. deg(OR,) = deg(AND,,) = O(y/n) [NisanSzegedy92]



Why Care About Approximate Degree?

Upper bounds on a(;ée(f) give algorithms for

m Efficient learning [KS01, KS04, KKMS05, STT12]
m Approximate inclusion-exclusion [LN93, KLS96, She08]
m Differentially private query release [TUV12, CTUW14]
Lower bounds on aéée(f) yield lower bounds on:
m Quantum query complexity [BBCMW98] [AS01] [AmbO03]
[KSW04]

m Communication complexity [BVWO07] [She08] [SZ07] [CA08]
[LS08] [Shel2]

m Circuit complexity [MP69] [Bei93] [Bei94] [She08]



Complexity of AC?

High small-bias
[BFS86] comm. complexity
Discrepancy upper bound
[She08] disc(G1) < exp(—d) \
/ [GHRO2] Large MAJ o THR circuits

Approx. degree
lower bound

degy_y-a(F) > d

[Kra02] Threshold weight
lower bound

3 Limitations on

existing learning algs.

W (G2) > exp(d)




Motivating Question

f € AC hard to approximate by degree d polynomials with
constant error

|7

F € ACY hard to approximate with very high error



Direct Product Theorems for Approximate Degree

m Direct product theorems: Computing g(f,..., f) requires
more

Resources (polynomial degree) and Error (€)

than computing f alone
m XOR lemma for approximate degree [0S03, Sherstov1l]:

dogy o (f®FD - @ f) >t deg(f)

t copies

Problem 1: PARITY ¢ AC®
Problem 2: deg1 (ORt(ORm, ...,0Rp)) =1



Our Contributions

m Identify the relaxed notion of “one-sided” approximate degree.

— deg > odeg
— Used implicitly in prior work [GS09] [BT13] [Shel3]

m Theorem: g&e/g obeys hardness amplification within ACY:

—

odegy -+ (ORy(f. .., f)) > odeg(f)

m Applications:
m New discrepancy upper bound and threshold weight lower
bound for AC°
m Nearly tight approx. degree lower bound for regular AND-OR

trees
m Weight-degree tradeoffs for read-once DNF



One-Sided Approximate Degree

m A real polynomial p is a one-sided e-approximation for f if

p(x) — 1] <e Vze f_l(l)
p(z) < —1+e Voe fl(-1)

—_—~—

m odeg, (f) = min degree of a one-sided e-approximation for f.

1
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Some Observations about odeg

m odeg(AND,,) = deg(AND,) = Q(v/n)
l.e. a one-sided approximation to AND,, can be turned into
an ordinary approximation with the same degree:
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Some Observations about odeg

m odeg(AND,,) = deg(AND,) = Q(v/n)
l.e. a one-sided approximation to AND,, can be turned into
an ordinary approximation with the same degree:
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Some Observations about odeg

® odeg(AND,,) = deg(AND,,) = Q(v/n)

m odeg(OR,,) = O(1)
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No amplification for OR!



Proof of Hardness Amplification:
The Method of Dual Polynomials



LP Formulation of Approximate Degree [IT68, She(8]

What is the best error achievable by any degree d approximation
of f7
Primal LP (Linear in € and coefficients of p):

min, . €
st |p(x) — f(x)] <e for all x € {—1,1}"
degp < d
Dual LP:
maxy Y (2)f(x)

ze{—-1,1}"

s.t. > () =1
ze{-1,1}"

Z P(x)g(x) =0 whenever degq < d
ze{-1,1}"



Dual Characterization of Approximate Degree

Theorem: a—gge(f) > d iff there exists a “dual polynomial”
Y {-1,1}" — R with

(1) Z () f(x) > € “high correlation with f"”
ze{-1,1}"

(2) Z [Y(z)] =1 “L1-norm 1”
ze{-1,1}"

(3) Z Y(z)g(z) =0if degg < d “pure high degree d"
ze{-1,1}"

(3) equivalent to: $(S) = 0 for all |S| < d.

Key technique in, e.g., [She08] [Lee09] [She09] [BT13] [Shel3]



Dual Formulation of odeg

Primal LP (Linear in € and coefficients of p):

min,. ¢
st [p(z) — 1] <e for all z € f71(1)
plz) < —1+e for all z € f~1(—1)
degp < d
Dual LP:
max, Y W(x)f(2)
ze{-1,1}"
s.t. > ) =1
ze{-1,1}"
Z Y(z)g(z) =0 whenever degq < d
ze{-1,1}"

P(x) <0 for all z € f~1(—1)



Dual Formulation of odeg

Theorem: (;c_i\eée(f) > d iff there exists a dual polynomial
¥ {~1,1}" - R with

(1) Z Y(x)f(x) > € “high correlation with f”
ze{-1,1}"

(2) Z [(z)| =1 “Ly-norm 1"
ze{-1,1}"

(3) Z Y(r)g(x) =0 if degqg < d “pure high degree d’
ze{-1,1}"

(4) (z) <0forallz e f71(—1) “one-sided error”



Goal: Construct an explicit dual polynomial ¥ for
Odegl_Q—t (F) Z d



Constructing a Dual Polynomial

m Start with dual polynomials:
B YN for&?eé(f) =d
m Define oyt : {—1,1}* — R by:
1/2 if y = ALL-FALSE
Yout(y) = { —1/2 ify= ALL-TRUE
0 otherwise

m Combine oyt and YN to obtain a dual polynomial ¢g for F'

m Follows construction used in [Lee09], [Sherstov09],
[BunThaler13] with refined analysis



A First Attempt

OR;

& /IN/IN

I . X,

Ty, >$n) = wOUT(~ = 7¢|N(xi)7 . )

m Yr has pure high degree at least d because Yoy is balanced.

E.g. If vout(y1,y2) = $(y1 + v2) and in(z1, 22) = 2122,
then

1
Yr(T11, T12, Ta1, T22) = 1(90111’12 + z21722).

m Does ¥r have high correlation with F'?

m Problem: vy might feed non-Boolean values into ¢gyt. But
we only have control over gyt on Boolean inputs.



The Actual Construction [She09, LeeQ9]

Vp(xe, .., x) = C-Yout(. .., sgn(vin(wi)) H [thin(zi)|

(C chosen to ensure 1 has Li-norm 1).

Must verify:
1 has pure high degree d v'[Lee09, Sherstov09]
1 has one-sided error v' By inspection

1 has correlation at least 1 — 2=t with F This work
Builds on [B.Thaler13]



(Sub)Goal: Show v has high correlation with F°



Correlation Analysis

Yp(xy, ... 1) = C-Yout(...,sgn(in(z;)) H [N ()]

m Idea: Show

> wp(x)-Fz) = dout(y) - ORy(y) =27  =1-27".

ze{-1,1}" ye{ 1,1}t

m Intuition: We are feeding sgn(¢yn(x;)) into YouTt-

m N is correlated with f, so sgn(¢yn(x;)) is a “decent
predictor” of f.

m But there are errors. Need to show errors decay exponentially.



Correlation Analysis

Vp(xe, .., 2) = C - Yout(. .., sgn(tin(wi)) H N (i)
m Goal: Show

Z Yp(z) - F Z Yout(y) - OR.(y) — 27t —1-927%

ze{—1,1}" ye{ 1,1}t
m Case 1: Consider y = (sgn¢yn(x1),...,sgniyn(x)) =
ALL-FALSE.
m If even a single coordinate y; of y is “truthful”, then
F(x) = ORy(f(z1), .., f (1)) = —

m Any individual coordinate of y is in error with probability at
most 1/2, since ¢y is well-correlated with f.

m So all coordinates of y are in error with probability only 2.



Correlation Analysis

Yp(, ... 2) = C - Yout(. .., sgn(tin(i)) H [N ()|

m Goal: Show

> wp(x)-F(z) = dout(y) - ORy(y) —27" =1-27".

ze{—1,1}n ye{ 1,1}t

m Case 2: Consider y = (sgn¢in(x1),...,sgnn(xe)) =
ALL-TRUE.

m Then F(y)=O0R¢(f(z1),..., f(zt)) =1 only if all
coordinates of y are “truthful”.

m Fortunately, )y has one-sided error: If sgn(¢yn(x;)) = 1,
then f(x;) is guaranteed to equal 1.



Summary of Correlation Analysis

m Case 1 (feeding ALL-TRUE into ©guT): Error decays like
27t because we only need to trust one coordinate.

m Case 2 (feeding ALL-FALSE into {oyT): We need to trust
all values. But we can because 1N has one-sided error.



Recap of the Proof

Yr(xy, ... 1) = C-Yout(...,sgn(in(z;)) H [N ()]

(C chosen to ensure 1 has Li-norm 1).

Properties of ¢ p:
Y has pure high degree d v'[Lee09, Sherstov09]
1 has one-sided error v By inspection
1 has correlation at least 1 — 27 with F' v



Applications to the Complexity of AC®



Complexity of AC?

High small-bias
[BFS86] comm. complexity
Discrepancy upper bound
[She08] disc(G1) < exp(—d) \
/ [GHRO2] Large MAJ o THR circuits

Approx. degree
lower bound

degy_y-a(F) > d

[Kra02] Threshold weight
lower bound

3 Limitations on

existing learning algs.

W (G2) > exp(d)




A New odeg Lower Bound for AC?

= We want to apply amplification to functions in ACY, getting
out very hard functions that are still in ACY.

m AC? function of interest: Let ED : {—1,1}" — {~1,1}
denote the ELEMENT DISTINCTNESS function.

m [AaronsonShi01] showed a(\eé(ED) = Q(n?/3)*.

m Best known lower bound on the approximate degree of an
ACP function.

m This work: odeg(ED) = Q(n2/3).

*
Hiding a logarithmic factor



New Lower Bounds for ACY

Theorem
Let F = Oan/s (EDns/s), c.. ,EDn3/5) ande=1— 2*”2/5.
Then odeg, (F) = Q(n?/?).

Proof: Combine lower bound on (;a(;g(ED) with Main Theorem.



New Lower Bounds for ACY

High small-bias
[BFS86] comm. complexity
Discrepancy upper bound
[She08] disc(G1) < exp(—d) \
/ [GHRO2] Large MAJ o THR circuits

Approx. degree Improves on d = nl/3
lower bound [BVWO07, She08, KP97]

degy_y-a(F) > d

_ 2/5
Setd=n [Kra02] Threshold weight

lower bound

3 Limitations on

existing learning algs.

W (G2) > exp(d)




Subsequent work

Further applications of one-sided approximate degree
m Amplification from o/cl\t% to threshold degree [Sherstov14]
m Algorithms for reliable agnostic learning [KanadeThaler14]

m Further hardness amplification results [Thaler14]



Thank you!



Subsequent Work by Sherstov [Shel4]



Threshold Degree

Let f:{—1,1}" — {—1,1} be a Boolean function. A polynomial
p sign-represents f if sgn(p(x)) = f(x) for all z € {—1,1}".

Definition

The threshold degree of f is mindeg(p), where the minimum is

over all sign-representations of f. (Equivalent to lim._,; agée(f)).



Threshold Degree of AC”

m Minsky and Papert [MP69] proved an Q(n'/3) lower bound on
the threshold degree of a specific DNF.

m It has been open ever since to prove a lower bound of
Q(n'/3+9) for any function in ACY.
m Only progress: Q(n'/3log* n) for any constant k [0S03].

m We conjectured that OR,,2/5(ED, /5, ...,ED,3/5) has
threshold degree Q(n?/5).



Subsequent Work

m Sherstov [Shel4| has recently proved our conjecture.

m More generally, he exhibits a depth & circuit of polynomial size
with threshold degree Q(n(k—1)/(2k=1)),
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