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Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

{
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise



Approximate Degree

A real polynomial p ε-approximates a Boolean function f if

|p(x)− f(x)| ≤ ε ∀x ∈ {−1, 1}n

d̃egε(f) = minimum degree needed to ε-approximate f

d̃eg(f) := d̃eg1/2(f) is the approximate degree of f

E.g. d̃eg(ORn) = d̃eg(ANDn) = Θ(
√
n) [NisanSzegedy92]



Why Care About Approximate Degree?

Upper bounds on d̃egε(f) give algorithms for

Efficient learning [KS01, KS04, KKMS05, STT12]

Approximate inclusion-exclusion [LN93, KLS96, She08]

Differentially private query release [TUV12, CTUW14]

Lower bounds on d̃egε(f) yield lower bounds on:

Quantum query complexity [BBCMW98] [AS01] [Amb03]
[KSW04]

Communication complexity [BVW07] [She08] [SZ07] [CA08]
[LS08] [She12]

Circuit complexity [MP69] [Bei93] [Bei94] [She08]



Complexity of AC0



Motivating Question

f ∈ AC0 hard to approximate by degree d polynomials with
constant error

⇓?
F ∈ AC0 hard to approximate with very high error



Direct Product Theorems for Approximate Degree

Direct product theorems: Computing g(f, . . . , f) requires
more

Resources (polynomial degree) and Error (ε)

than computing f alone

XOR lemma for approximate degree [OS03, Sherstov11]:

d̃eg1−2−t(f ⊕ f ⊕ · · · ⊕ f︸ ︷︷ ︸
t copies

) & t · d̃eg(f)

Problem 1: PARITY /∈ AC0

Problem 2: d̃eg1− 1
2mt

(ORt(ORm, . . . ,ORm)) = 1



Our Contributions

Identify the relaxed notion of “one-sided” approximate degree.

– d̃eg ≥ õdeg
– Used implicitly in prior work [GS09] [BT13] [She13]

Theorem: õdeg obeys hardness amplification within AC0:

õdeg1−2−t(ORt(f, . . . , f)) ≥ õdeg(f)

Applications:
New discrepancy upper bound and threshold weight lower
bound for AC0

Nearly tight approx. degree lower bound for regular AND-OR
trees
Weight-degree tradeoffs for read-once DNF



One-Sided Approximate Degree

A real polynomial p is a one-sided ε-approximation for f if

|p(x)− 1| ≤ ε ∀x ∈ f−1(1)

p(x) ≤ −1 + ε ∀x ∈ f−1(−1)

õdegε(f) = min degree of a one-sided ε-approximation for f .



Some Observations about õdeg

õdeg(ANDn) = d̃eg(ANDn) = Ω(
√
n)

I.e. a one-sided approximation to ANDn can be turned into
an ordinary approximation with the same degree:
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Some Observations about õdeg

õdeg(ANDn) = d̃eg(ANDn) = Ω(
√
n)

õdeg(ORn) = Θ(1)

No amplification for OR!



Proof of Hardness Amplification:
The Method of Dual Polynomials



LP Formulation of Approximate Degree [IT68, She08]

What is the best error achievable by any degree d approximation
of f?
Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d



Dual Characterization of Approximate Degree

Theorem: d̃egε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0 if deg q ≤ d “pure high degree d”

(3) equivalent to: ψ̂(S) = 0 for all |S| ≤ d.

Key technique in, e.g., [She08] [Lee09] [She09] [BT13] [She13]



Dual Formulation of õdeg

Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− 1| ≤ ε for all x ∈ f−1(1)

p(x) ≤ −1 + ε for all x ∈ f−1(−1)

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d

ψ(x) ≤ 0 for all x ∈ f−1(−1)



Dual Formulation of õdeg

Theorem: õdegε(f) > d iff there exists a dual polynomial
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0 if deg q ≤ d “pure high degree d”

(4) ψ(x) ≤ 0 for all x ∈ f−1(−1) “one-sided error”



Goal: Construct an explicit dual polynomial ψF for

õdeg1−2−t(F ) ≥ d



Constructing a Dual Polynomial

Start with dual polynomials:

ψIN for õdeg (f) = d
Define ψOUT : {−1, 1}t → R by:

ψOUT(y) =


1/2 if y = ALL-FALSE

−1/2 if y = ALL-TRUE

0 otherwise

Combine ψOUT and ψIN to obtain a dual polynomial ψF for F

Follows construction used in [Lee09], [Sherstov09],
[BunThaler13] with refined analysis



A First Attempt

ψF (x1, . . . , xn) := ψOUT(. . . , ψIN(xi), . . . )

ψF has pure high degree at least d because ψOUT is balanced.
E.g. If ψOUT(y1, y2) = 1

4(y1 + y2) and ψIN(z1, z2) = z1z2,
then

ψF (x11, x12, x21, x22) =
1

4
(x11x12 + x21x22).

Does ψF have high correlation with F?

Problem: ψIN might feed non-Boolean values into ψOUT. But
we only have control over ψOUT on Boolean inputs.



The Actual Construction [She09, Lee09]

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t∏
i=1

|ψIN(xi)|

(C chosen to ensure ψF has L1-norm 1).

Must verify:

1 ψF has pure high degree d X[Lee09, Sherstov09]

2 ψF has one-sided error XBy inspection

3 ψF has correlation at least 1− 2−t with F This work
Builds on [B.Thaler13]



(Sub)Goal: Show ψF has high correlation with F



Correlation Analysis

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t∏
i=1

|ψIN(xi)|

Idea: Show∑
x∈{−1,1}n

ψF (x) · F (x) ≥
∑

y∈{−1,1}t
ψOUT(y) ·ORt(y)− 2−t = 1− 2−t.

Intuition: We are feeding sgn(ψIN(xi)) into ψOUT.

ψIN is correlated with f , so sgn(ψIN(xi)) is a “decent
predictor” of f .

But there are errors. Need to show errors decay exponentially.



Correlation Analysis

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t∏
i=1

|ψIN(xi)|

Goal: Show∑
x∈{−1,1}n

ψF (x) · F (x) ≥
∑

y∈{−1,1}t
ψOUT(y) ·ORt(y)− 2−t = 1− 2−t.

Case 1: Consider y = (sgnψIN(x1), . . . , sgnψIN(xt))=
ALL-FALSE.

If even a single coordinate yi of y is “truthful”, then
F (x) = ORt(f(x1), . . . , f(xt)) = −1.

Any individual coordinate of y is in error with probability at
most 1/2, since ψIN is well-correlated with f .

So all coordinates of y are in error with probability only 2−t.



Correlation Analysis

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t∏
i=1

|ψIN(xi)|

Goal: Show∑
x∈{−1,1}n

ψF (x) · F (x) ≥
∑

y∈{−1,1}t
ψOUT(y) ·ORt(y)− 2−t = 1− 2−t.

Case 2: Consider y = (sgnψIN(x1), . . . , sgnψIN(xt)) =
ALL-TRUE.

Then F (y)=ORt(f(x1), . . . , f(xt)) = 1 only if all
coordinates of y are “truthful”.

Fortunately, ψIN has one-sided error: If sgn(ψIN(xi)) = 1,
then f(xi) is guaranteed to equal 1.



Summary of Correlation Analysis

Case 1 (feeding ALL-TRUE into ψOUT): Error decays like
2−t because we only need to trust one coordinate.

Case 2 (feeding ALL-FALSE into ψOUT): We need to trust
all values. But we can because ψIN has one-sided error.



Recap of the Proof

ψF (x1, . . . , xt) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

t∏
i=1

|ψIN(xi)|

(C chosen to ensure ψF has L1-norm 1).

Properties of ψF :

1 ψF has pure high degree d X[Lee09, Sherstov09]

2 ψF has one-sided error XBy inspection

3 ψF has correlation at least 1− 2−t with F X



Applications to the Complexity of AC0



Complexity of AC0



A New õdeg Lower Bound for AC0

We want to apply amplification to functions in AC0, getting
out very hard functions that are still in AC0.

AC0 function of interest: Let ED : {−1, 1}n → {−1, 1}
denote the Element Distinctness function.

[AaronsonShi01] showed d̃eg(ED) = Ω(n2/3)∗.

Best known lower bound on the approximate degree of an
AC0 function.

This work: õdeg(ED) = Ω(n2/3).

∗
Hiding a logarithmic factor



New Lower Bounds for AC0

Theorem

Let F = ORn2/5(EDn3/5 , . . . ,EDn3/5) and ε = 1− 2−n
2/5

.

Then õdegε(F ) = Ω(n2/5).

Proof: Combine lower bound on õdeg(ED) with Main Theorem.



New Lower Bounds for AC0



Subsequent work

Further applications of one-sided approximate degree

Amplification from õdeg to threshold degree [Sherstov14]

Algorithms for reliable agnostic learning [KanadeThaler14]

Further hardness amplification results [Thaler14]



Thank you!



Subsequent Work by Sherstov [She14]



Threshold Degree

Definition

Let f : {−1, 1}n → {−1, 1} be a Boolean function. A polynomial
p sign-represents f if sgn(p(x)) = f(x) for all x ∈ {−1, 1}n.

Definition

The threshold degree of f is min deg(p), where the minimum is

over all sign-representations of f . (Equivalent to limε→1 d̃egε(f)).



Threshold Degree of AC0

Minsky and Papert [MP69] proved an Ω(n1/3) lower bound on
the threshold degree of a specific DNF.

It has been open ever since to prove a lower bound of
Ω(n1/3+δ) for any function in AC0.

Only progress: Ω(n1/3 logk n) for any constant k [OS03].

We conjectured that ORn2/5(EDn3/5 , . . . ,EDn3/5) has
threshold degree Ω(n2/5).



Subsequent Work

Sherstov [She14] has recently proved our conjecture.

More generally, he exhibits a depth k circuit of polynomial size
with threshold degree Ω(n(k−1)/(2k−1)).
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