Hardness Amplification and the Approximate Degree of Constant Depth Circuits

Mark Bun^1 and Justin Thaler^2

¹Harvard University

²Yahoo! Labs

July 10, 2015

Boolean function
$$f : \{-1, 1\}^n \to \{-1, 1\}$$

AND_n(x) =
$$\begin{cases} -1 & (\mathsf{TRUE}) & \text{if } x = (-1)^n \\ 1 & (\mathsf{FALSE}) & \text{otherwise} \end{cases}$$

A real polynomial $p \ \epsilon\text{-approximates}$ a Boolean function f if

$$|p(x) - f(x)| \le \epsilon \quad \forall x \in \{-1, 1\}^n$$

deg_ε(f) = minimum degree needed to ε-approximate f
 deg(f) := deg_{1/2}(f) is the approximate degree of f
 E.g. deg(OR_n) = deg(AND_n) = Θ(√n) [NisanSzegedy92]

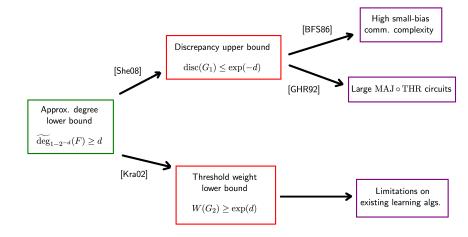
Upper bounds on $\widetilde{\deg}_\epsilon(f)$ give algorithms for

- Efficient learning [KS01, KS04, KKMS05, STT12]
- Approximate inclusion-exclusion [LN93, KLS96, She08]
- Differentially private query release [TUV12, CTUW14]

Lower bounds on $\widetilde{\deg}_{\epsilon}(f)$ yield lower bounds on:

- Quantum query complexity [BBCMW98] [AS01] [Amb03] [KSW04]
- Communication complexity [BVW07] [She08] [SZ07] [CA08] [LS08] [She12]
- Circuit complexity [MP69] [Bei93] [Bei94] [She08]

Complexity of AC^0



$f \in \mathrm{AC}^0$ hard to approximate by degree d polynomials with constant error

 \Downarrow ?

 $F \in AC^0$ hard to approximate with very high error

Direct Product Theorems for Approximate Degree

Direct product theorems: Computing $g(f, \ldots, f)$ requires more

Resources (polynomial degree) and Error (ϵ) than computing f alone

XOR lemma for approximate degree [OS03, Sherstov11]:

$$\widetilde{\deg}_{1-2^{-t}}(\underbrace{f \oplus f \oplus \dots \oplus f}_{t \text{ copies}}) \gtrsim t \cdot \widetilde{\deg}(f)$$

Problem 1: $\operatorname{PARITY} \notin \operatorname{AC}^{0}$ Problem 2: $\operatorname{\widetilde{deg}}_{1-\frac{1}{2mt}}(\operatorname{OR}_{t}(\operatorname{OR}_{m},\ldots,\operatorname{OR}_{m})) = 1$

Our Contributions

• Identify the relaxed notion of "one-sided" approximate degree.

- $-\deg\geq \mathrm{odeg}$
- Used implicitly in prior work [GS09] [BT13] [She13]
- **Theorem:** \widetilde{odeg} obeys hardness amplification within AC^0 :

$$\widetilde{\operatorname{odeg}}_{1-2^{-t}}(\operatorname{OR}_t(f,\ldots,f)) \ge \widetilde{\operatorname{odeg}}(f)$$

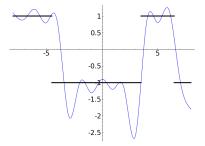
Applications:

- $\hfill New discrepancy upper bound and threshold weight lower bound for <math display="inline">AC^0$
- Nearly tight approx. degree lower bound for regular AND-OR trees
- Weight-degree tradeoffs for read-once DNF

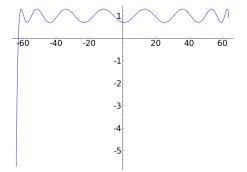
• A real polynomial p is a <u>one-sided</u> ϵ -approximation for f if

$$|p(x) - 1| \le \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 + \epsilon \quad \forall x \in f^{-1}(-1)$$

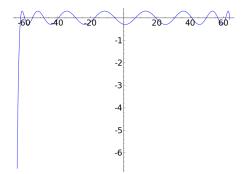
• $\widetilde{\operatorname{odeg}}_{\epsilon}(f) = \min \text{ degree of a one-sided } \epsilon \text{-approximation for } f.$



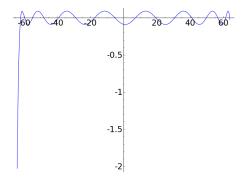
•
$$\widetilde{\operatorname{odeg}}(\operatorname{AND}_n) = \widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n})$$



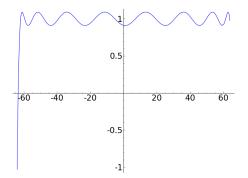
•
$$\widetilde{\operatorname{odeg}}(\operatorname{AND}_n) = \widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n})$$



•
$$\widetilde{\operatorname{odeg}}(\operatorname{AND}_n) = \widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n})$$



•
$$\widetilde{\operatorname{odeg}}(\operatorname{AND}_n) = \widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n})$$



•
$$\widetilde{\operatorname{odeg}}(\operatorname{AND}_n) = \widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n})$$

No amplification for OR!

Proof of Hardness Amplification: The Method of Dual Polynomials

What is the best error achievable by **any** degree d approximation of f? Primal LP (Linear in ϵ and coefficients of p):

$$\begin{array}{ll} \min_{p,\epsilon} & \epsilon \\ \text{s.t.} & |p(x)-f(x)| \leq \epsilon \\ & \deg p \leq d \end{array} \qquad \qquad \text{for all } x \in \{-1,1\}^n \\ \end{array}$$

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

Theorem: deg_e(f) > d iff there exists a "dual polynomial" $\psi: \{-1,1\}^n \to \mathbb{R}$ with (1) $\sum \psi(x)f(x) > \epsilon$ "high correlation with f" $x \in \{-1,1\}^n$ (2) $\sum |\psi(x)| = 1$ " L_1 -norm 1" $x \in \{-1,1\}^n$ (3) $\sum \psi(x)q(x) = 0$ if $\deg q \le d$ "pure high degree d" $x \in \{-1,1\}^n$

(3) equivalent to: $\hat{\psi}(S) = 0$ for all $|S| \leq d$.

Key technique in, e.g., [She08] [Lee09] [She09] [BT13] [She13]

Dual Formulation of $\widetilde{\mathrm{odeg}}$

Primal LP (Linear in ϵ and coefficients of p):

$$\begin{array}{ll} \min_{p,\epsilon} & \epsilon \\ \text{s.t.} & |p(x) - 1| \leq \epsilon \\ & p(x) \leq -1 + \epsilon \\ & \deg p \leq d \end{array}$$

for all
$$x \in f^{-1}(1)$$

for all $x \in f^{-1}(-1)$

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \\ & \psi(x) \leq 0 \qquad \qquad \text{for all } x \in f^{-1}(-1) \end{split}$$

Theorem: $\widetilde{\text{odeg}}_{\epsilon}(f) > d$ iff there exists a dual polynomial $\psi: \{-1,1\}^n \to \mathbb{R}$ with

- (1) $\sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon$ "high correlation with f"
- (2) $\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$ "L₁-norm 1"
- (3) $\sum_{x \in \{-1,1\}^n} \psi(x)q(x) = 0 \text{ if } \deg q \le d \qquad \text{``pure high degree } d\text{''}$

(4) $\psi(x) \le 0$ for all $x \in f^{-1}(-1)$

"one-sided error"

Goal: Construct an explicit dual polynomial ψ_F for $\widetilde{\operatorname{odeg}}_{1-2^{-t}}(F) \ge d$

Start with dual polynomials:

• ψ_{IN} for $\widetilde{\text{odeg}}(f) = d$ • Define $\psi_{\text{OUT}} : \{-1, 1\}^t \to \mathbb{R}$ by:

$$\psi_{\mathbf{OUT}}(y) = \begin{cases} 1/2 & \text{if } y = \text{ ALL-FALSE} \\ -1/2 & \text{if } y = \text{ ALL-TRUE} \\ 0 & \text{otherwise} \end{cases}$$

Combine \u03c6_{OUT} and \u03c6_{IN} to obtain a dual polynomial \u03c6_F for F
 Follows construction used in [Lee09], [Sherstov09], [BunThaler13] with refined analysis

A First Attempt

OR.

$$\underbrace{f}_{x_1} \underbrace{f}_{x_1} \psi_F(x_1, \dots, x_n) := \psi_{\mathsf{OUT}}(\dots, \psi_{\mathsf{IN}}(x_i), \dots)$$

• ψ_F has pure high degree at least d because ψ_{OUT} is balanced. E.g. If $\psi_{\text{OUT}}(y_1, y_2) = \frac{1}{4}(y_1 + y_2)$ and $\psi_{\text{IN}}(z_1, z_2) = z_1 z_2$, then

$$\psi_F(x_{11}, x_{12}, x_{21}, x_{22}) = \frac{1}{4}(x_{11}x_{12} + x_{21}x_{22}).$$

- Does ψ_F have high correlation with F?
- Problem: \u03c6_{IN} might feed non-Boolean values into \u03c6_{OUT}. But we only have control over \u03c6_{OUT} on Boolean inputs.

$$\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

1

(C chosen to ensure ψ_F has L_1 -norm 1).

Must verify:

- **1** ψ_F has pure high degree $d \checkmark [\text{Lee09}, \text{Sherstov09}]$
- 2 ψ_F has one-sided error \checkmark By inspection
- 3 ψ_F has correlation at least $1 2^{-t}$ with F This work Builds on [B.Thaler13]

(Sub)Goal: Show ψ_F has high correlation with F

$$\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

Idea: Show

$$\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.$$

- Intuition: We are feeding $sgn(\psi_{IN}(x_i))$ into ψ_{OUT} .
- ψ_{IN} is correlated with f, so $sgn(\psi_{IN}(x_i))$ is a "decent predictor" of f.
- But there are errors. Need to show errors decay exponentially.

Correlation Analysis

$$\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n} |\psi_{\mathsf{IN}}(x_i)|$$

Goal: Show

$$\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.$$

- Case 1: Consider $y = (\operatorname{sgn} \psi_{IN}(x_1), \dots, \operatorname{sgn} \psi_{IN}(x_t)) =$ ALL-FALSE.
- If even a single coordinate y_i of y is "truthful", then $F(x) = OR_t(f(x_1), \ldots, f(x_t)) = -1.$
- Any individual coordinate of y is in error with probability at most 1/2, since ψ_{IN} is well-correlated with f.
- So all coordinates of y are in error with probability only 2^{-t} .

Correlation Analysis

$$\psi_F(x_1, \dots, x_t) := C \cdot \psi_{\mathsf{OUT}}(\dots, \operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)), \dots) \prod_{i=1}^r |\psi_{\mathsf{IN}}(x_i)|$$

• Goal: Show

+

$$\sum_{x \in \{-1,1\}^n} \psi_F(x) \cdot F(x) \ge \sum_{y \in \{-1,1\}^t} \psi_{\mathsf{OUT}}(y) \cdot \operatorname{OR}_t(y) - 2^{-t} = 1 - 2^{-t}.$$

- Case 2: Consider $y = (\operatorname{sgn} \psi_{IN}(x_1), \dots, \operatorname{sgn} \psi_{IN}(x_t)) =$ ALL-TRUE.
- Then $F(y) = OR_t(f(x_1), \dots, f(x_t)) = 1$ only if <u>all</u> coordinates of y are "truthful".
- Fortunately, ψ_{IN} has one-sided error: If $sgn(\psi_{IN}(x_i)) = 1$, then $f(x_i)$ is guaranteed to equal 1.

- Case 1 (feeding **ALL-TRUE** into ψ_{OUT}): Error decays like 2^{-t} because we only need to trust one coordinate.
- Case 2 (feeding **ALL-FALSE** into ψ_{OUT}): We need to trust all values. But we can because ψ_{IN} has one-sided error.

$$\psi_F(x_1,\ldots,x_t) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^t |\psi_{\mathsf{IN}}(x_i)|$$

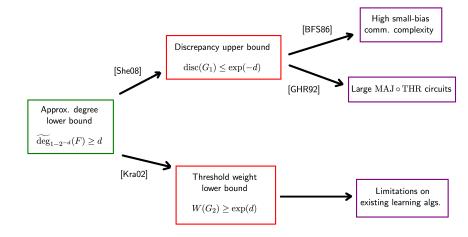
(C chosen to ensure ψ_F has L_1 -norm 1).

Properties of ψ_F :

- **1** ψ_F has pure high degree $d \checkmark$ [Lee09, Sherstov09]
- **2** ψ_F has one-sided error \checkmark By inspection
- 3 ψ_F has correlation at least $1-2^{-t}$ with $F \checkmark$

Applications to the Complexity of $\mathrm{A}\mathrm{C}^0$

Complexity of AC^0



A New $\widetilde{\mathrm{odeg}}$ Lower Bound for AC^0

- We want to apply amplification to functions in AC⁰, getting out very hard functions that are still in AC⁰.
- AC⁰ function of interest: Let ED : $\{-1, 1\}^n \rightarrow \{-1, 1\}$ denote the ELEMENT DISTINCTNESS function.
- [AaronsonShi01] showed $\widetilde{\operatorname{deg}}(\operatorname{ED}) = \Omega(n^{2/3})^*$.
- \blacksquare Best known lower bound on the approximate degree of an AC^0 function.
- This work: $\widetilde{\text{odeg}}(\text{ED}) = \Omega(n^{2/3}).$

*Hiding a logarithmic factor

New Lower Bounds for AC^0

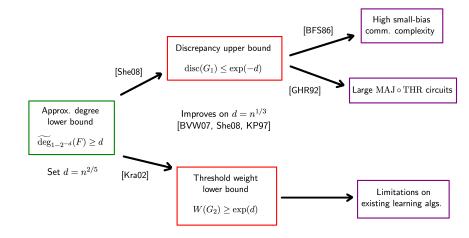
Theorem

Let
$$F = OR_{n^{2/5}}(ED_{n^{3/5}}, \dots, ED_{n^{3/5}})$$
 and $\epsilon = 1 - 2^{-n^{2/5}}$.
Then $\widetilde{odeg}_{\epsilon}(F) = \Omega(n^{2/5})$.

Proof: Combine lower bound on $\widetilde{\mathrm{odeg}}(\mathrm{ED})$ with Main Theorem.

010

New Lower Bounds for AC^0



Further applications of one-sided approximate degree

- Amplification from odeg to threshold degree [Sherstov14]
- Algorithms for reliable agnostic learning [KanadeThaler14]
- Further hardness amplification results [Thaler14]

Thank you!

Subsequent Work by Sherstov [She14]

Definition

Let $f : \{-1,1\}^n \to \{-1,1\}$ be a Boolean function. A polynomial p sign-represents f if sgn(p(x)) = f(x) for all $x \in \{-1,1\}^n$.

Definition

The <u>threshold degree</u> of f is min deg(p), where the minimum is over all sign-representations of f. (Equivalent to $\lim_{\epsilon \to 1} \widetilde{\text{deg}}_{\epsilon}(f)$).

- Minsky and Papert [MP69] proved an $\Omega(n^{1/3})$ lower bound on the threshold degree of a specific DNF.
- It has been open ever since to prove a lower bound of $\Omega(n^{1/3+\delta})$ for any function in AC^0 .
- Only progress: $\Omega(n^{1/3} \log^k n)$ for any constant k [OS03].
- We conjectured that $OR_{n^{2/5}}(ED_{n^{3/5}},\ldots,ED_{n^{3/5}})$ has threshold degree $\Omega(n^{2/5})$.

- Sherstov [She14] has recently proved our conjecture.
- More generally, he exhibits a depth k circuit of polynomial size with threshold degree $\Omega(n^{(k-1)/(2k-1)}).$