Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities

Mark Bun and Justin Thaler

Harvard University

July 8, 2013

Boolean function
$$f : \{-1,1\}^n \to \{-1,1\}$$

OR_n $(x) = \begin{cases} 1 \text{ (FALSE)} & \text{if } x = 1^n \\ -1 & (\mathsf{TRUE}) & \text{otherwise} \end{cases}$

• p a real polynomial ϵ -approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

• $\deg_{\epsilon}(f) = \text{minimum degree needed to } \epsilon\text{-approximate } f$ • $\widetilde{\deg}(f) := \deg_{1/3}(f)$ is the approximate degree of f

Applications

Lower bounds on $\widetilde{\operatorname{deg}}$

- Quantum query complexity [BBCMW98] [AS01] [Amb03] [KSW04]
- Communication complexity [BVW07] [She07] [SZ07] [CA08] [LS08] [She12]
- Circuit complexity [MP69] [Bei93] [Bei94] [She08]

Upper bounds on $\widetilde{\deg}$

- Learning theory [KS03] [KKMS06]
- Data privacy [TUV12] [CTUW13]

1 Tight lower bound on $\widetilde{\deg}$ AND-OR

- Challenge problem in lower bounding approximate degree [Aar08]
- Refines analysis of a "dual polynomial" due to [She09]
- 2 Explicit dual polynomials witnessing tight approximate degree lower bounds for symmetric functions
- 3 Dual proofs of Markov-type inequalities used to lower bound approximate degree

Lower Bounding Approximate Degree

[NS91] deg $OR_n = \Theta(\sqrt{n})$, [Pat92] for symmetric functions **1** Symmetrize

 $p(x_1, \dots, x_n) \approx \operatorname{OR}_n(x_1, \dots, x_n) \Rightarrow P(y) \text{ with } \deg P \leq \deg p$

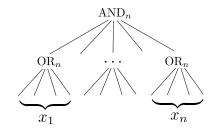
2 Markov-Bernstein inequality

If $|P(y)| \leq 1$ for $y \in [-1, 1]$, then

$$|P'(y)| \le \frac{\deg P}{\sqrt{1-y^2}}$$

Lower Bounding Approximate Degree

- Symmetrization loses information
- Recent approaches focus on "moving beyond symmetrization"
- What is $\deg \text{AND-OR}_{n^2}$?



(Re-)posed by Aaronson at FOCS '08

```
Upper bounds \label{eq:holds} \begin{array}{l} \mbox{[HMW03]} & \widetilde{\mathrm{deg}} \mbox{AND-}\mathrm{OR}_{n^2} = O(n) \end{array}
```

Lower bounds

 $\begin{array}{ll} [{\sf NS91}] & \Omega(\sqrt{n}) \\ [{\sf Shi01}] & \Omega(\sqrt{n\log n}) \\ [{\sf Amb03}] & \Omega(n^{2/3}) \\ [{\sf She09}] & \Omega(n^{3/4}) \end{array}$

This work $\Omega(n)$ [She13] $\Omega(n)$, independently

Beyond Symmetrization via Dual Polynomials

Dual Characterization of Approximate Degree

Primal (Linear in ϵ and coefficients of p):

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

Theorem: $\deg_{\epsilon}(f) > d$ iff there exists a "dual polynomial" ψ with

(1)
$$\sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon$$
 "high correlation with f "
(2)
$$\sum_{x \in \{-1,1\}^n} |\psi(x)| = 1$$
 " L_1 -norm 1"
(3)
$$\sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0, \deg q \le d$$
 "pure high degree d "

Key technique in, e.g., [She07] [Lee09] [She09]

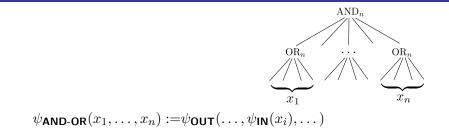
Goal: Construct an explicit dual polynomial $\psi_{\rm AND-OR}$ for AND-OR

By [NS91], there are dual polynomials ψ_{OUT} for $\widetilde{\deg} AND_n = \Omega(\sqrt{n})$ and ψ_{IN} for $\widetilde{\deg} OR_n = \Omega(\sqrt{n})$

We can construct these duals explicitly [Špa08]

- Goal: Combine ψ_{OUT} and ψ_{IN} to obtain a dual polynomial ψ_{AND-OR} for AND-OR
- Refines analysis of construction due to [Lee09] and [She09]

A First Attempt



Combined dual polynomial [She09]

$$\psi_{\mathsf{AND-OR}}(x_1,\ldots,x_n) := \psi_{\mathsf{OUT}}(\ldots,\psi_{\mathsf{IN}}(x_i),\ldots)$$
$$2^n \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}\psi_{\mathsf{IN}}(x_i),\ldots) \prod_{i=1}^n |\psi_{\mathsf{IN}}(x_i)|$$

Verify:

- **1** $\psi_{\text{AND-OR}}$ has high correlation with AND-OR Our contribution
- 2 $\psi_{\text{AND-OR}}$ has L_1 -norm $1 \checkmark$ [She09]
- **3** $\psi_{\text{AND-OR}}$ has pure high degree $n \checkmark$ [She09]

(Sub)Goal: Show $\psi_{\text{AND-OR}}$ has high correlation with AND-OR

- If AND(y) = FALSE, <u>one input bit</u> witnesses this fact i.e. AND has "certificate complexity 1" on FALSE inputs
- **2** Dual polynomial ψ_{IN} has "one-sided error" [GS10]
 - If $\operatorname{sgn} \psi_{IN}(y) = \mathsf{TRUE}$, then $\operatorname{OR}(y) = \mathsf{TRUE}$
 - Special property of the OR function

$$\psi_{\mathsf{AND-OR}}(x_1,\ldots,x_n) = 2^n \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}\psi_{\mathsf{IN}}(x_i),\ldots) \prod_{i=1}^n |\psi_{\mathsf{IN}}(x_i)|$$

$$\psi_{\text{AND-OR}}(x)$$
 on random $x \stackrel{\text{i.d.}}{=} \psi_{\text{OUT}}(z)$ on random z
If $OR(x_i) = \operatorname{sgn} \psi_{\text{IN}}(x_i)$ on every input,
$$\operatorname{Correlation} = \sum_{z \in \{-1,1\}^n} \psi_{\text{OUT}}(z) \operatorname{AND}(z) > \epsilon$$

But $\operatorname{sgn} \psi_{IN}$ is only correlated with OR, so input to AND is noisy

Key ideas show that noise doesn't propagate

Main Result

ψ_{AND-OR} has high correlation with AND-OR √
 ψ_{AND-OR} has L₁-norm 1 √
 ψ_{AND-OR} has pure high degree n √

Conclude $\widetilde{\operatorname{deg}} \operatorname{AND-OR}_{n^2} = \Omega(n)$

[Pat92] Symmetrization argument shows

$$\widetilde{\mathrm{deg}}f = \Omega(\sqrt{t(n-t)})$$

if f changes value between layers $t-1 \mbox{ and } t$ of the Hamming cube

This work: Explicit dual polynomials for this (tight) lower bound

- Elementary proof based only on LP-duality
- Dual polynomials have numerous applications in communication complexity (see survey [She08])
- Informs search for dual polynomials to prove new lower bounds

Dual Polynomials for Symmetric Functions

• [Špa08] gave a dual polynomial for OR considering layers $\{i^2: 0 \le i \le \sqrt{n}\}$ of the Hamming cube

■ A similar idea yields a dual polynomial for MAJ, considering layers {4i : 0 ≤ i ≤ n/4}

.

Our dual:

1 Interpolates between OR and MAJ

....

Exploits complementary slackness by weighting the extreme points of the optimal ε-approximation of [She08]

.....

.....

....

- Context for our work: Moving beyond symmetrization
- Can we prove more new deg lower bounds by constructing dual polynomials?

What is the approximate degree of AC^{0} ?

 Importance of dual polynomials with one-sided error
 [GS10] Separation of multi-party communication versions of NP and co-NP

[BT13] New threshold weight lower bounds for AC⁰

Thank you!